We employed a mixed-methods approach with a survey and follow-up individual interviews. In both the survey and interviews, participants were asked to evaluate information written for the general public or a scholarly audience. Participants in the interviews were encouraged to think aloud to elucidate their criteria. We analyzed quantitative data using descriptive statistics and coded qualitative data using inductive thematic analysis.
This dataset containts post-processed data from 3 radiative-convective equilibrium simulations run by the System for Atmospheric Modeling (SAM). The scripts to produce the data and recreate the figures/tables of Garrett et al. 20XX are also included. SAM's configuration files and restart files are provided for those interested in recreating the full dataset of the simulations or creating new test cases.
This dataset includes the GEOS-Chem model output and python scripts required to reproduce work outlined in 'Potential Air Quality Side-Effects of Emitting H2O2 to Enhance Methane Oxidation as a Climate Solution' by Mayhew and Haskins. The study investigates the predicted change to a selection of air pollutants resulting from the addition of elevated point sources of H2O2 to GEOS-Chem to simulate a proposed methane mitigation technology. The efficiency of this technology is also assessed according to a simplified theoretical framework which is tested against the GEOS-Chem output.
Skull thickness distributions were collected from infants under 12 months of age (n=266). Data-driven age groups were established based on the variability of skull thickness with age. By providing anatomical standards and guidelines for each age and sex group, this work aims to improve consistency in infant head trauma modeling studies.
This is a data set for generating current densities used for the validation of two methods. Similarly, it gives the electric fields for the 80-minute validation of the two methods. Furthermore, the partial transfer function method calculated electric fields are also deposited in this dataset. Similarly, the spectrum of each source and impulse response obtained from the FDTD model are also included. Finally, the electric fields were obtained for 8 hours using the PTF method.
Whole-cell recordings from the anuran inferior colliculus. The data is averaged & representative whole-cell recordings, stats and code used for the analysis.
Data were collected from the free online available International Ionosphere Reference (IRI) database ( https://kauai.ccmc.gsfc.nasa.gov/instantrun/iri) for January 1, 2020. The data were then interpolated from 1km to our desired resolution of 0.1km. This is is profile used to simulate the 3D FDTD models to observe the propagation of power line harmonic radiation through the ionosphere.
This repository includes all seismograms we used for the 58 earthquakes occurring in the New Guinea area and recorded in North America that our analyzed in our paper: Investigating ultra-low velocity zones as sources of PKP scattering beneath North America and the Western Pacific Ocean: Potential links to subducted oceanic crust. AGU Advances, in review.
This dataset includes seismic waveforms for an event used in the study "Effects of 2.5-D ultra-low and ultra-high velocity zones on flip-reverse-stacking (FRS) of the ScS wavefield". In addition, because ultra-high velocity zone (UHVZ) synthetic computations can be challenging when using ray based methods, we include our full waveform solutions for 1-D and 2.5-D UHVZ models as discussed in our manuscript. These can be used to benchmark other methods.
The dataset contains velocity measurements along the fiber optic cable connecting the University of Utah campus to the University of Utah Downtown data center (875 West Temple, Salt Lake City, UT). The data has been collected using the Distributed acoustic sensing (DAS) system that records the vibration signals along 8.4 km long optical fiber every 4.9-m interval with a sampling rate of approximately 1000 Hz. The fiber is mainly installed along the red line of TRAX, which is the light rail system of the Utah Transit Authority. The route intersects the East Bench fault, which is known as an active fault segment of the Wasatch Fault zone. Although no earthquake signals were detected, the velocity data converted to strain rate clearly show the operation of trains between the stations at 450 S Main Street and 900 South 200 West. Analysis of this dataset is expected to provide insights into seismic velocities at shallow depths and structures associated with fault scarps. and See README file for data retrieval instructions.
This dataset includes electrical resistivity tomography (ERT) measurements collected around the Great Salt Lake (GSL). This was supported through an NSF Rapid proposal. These preliminary measurements form a baseline by which to do ERT measurements to detect ground-water changes around GSL.
As strong cooling agents in the climate system, marine low-level clouds are an important component of the climate system. Demonstrating how marine low-level clouds respond to anomalies in the atmospheric general circulation in the present climate has the potential to be illustrative of how low clouds might change in a future climate. We examine how thermodynamic factors that control low cloud occurrence change during an ENSO cycle and then how low clouds observed by the CloudSat and CALIPSO satellites vary. In addition to the well-known decrease in marine low clouds in the Northeast Pacific during El Niño onset in June, July and August (JJA), we also find significant increases in the low cloud occurrence on the flanks of the anomalously warm water in the Equatorial Central Pacific during December, January and February (DJF). These low cloud changes are linked to measurable changes in the Earth’s energy budget with net warming of the Earth system during JJA and cooling of the Earth system during DJF.
This is the python code to create the figures for the paper about the above research.
The spectral data required to reproduce the results from the paper "Intraoperative characterization of cardiac tissue: the potential of light scattering spectroscopy," published in the Journal of Biomedical Optics.
We conducted a qualitative study using a phenomenological approach in India’s Spiti Valley between August and October 2023. Sixteen individuals, age 18 years and older, participated in one-on-one interviews. The interviews were transcribed from Hindi into English, reviewed for accuracy by a native speaker, and imported into Dedoose software. Data were analyzed using inductive coding. These are the raw data sheets associated with this study. Ethics approval was provided by the University of Utah’s Institutional Review Board (IRB:00167060).
Evaluator responses to compliance, understandability, actionability, and readability criteria, by base and type, for Hearing Conservation educational materials from active-duty, continental United States Air Force bases.
Datasets include interviews and observations of healthcare staff in 25 long-term care facilities across 7 states and two data collection visits to understand frequency, type, and reason (i.e., types of care activities provided during an interaction) for staff-resident interactions in 2019 and 2020. Staff-resident interactions were studied to examine potential for multidrug-resistant organism (MDRO) transmission within long-term care settings.
This collection includes radial component displacement seismograms in the time window including the SKS, SKKS and SPdKS seismic arrivals. These data all interact with ultra-low velocity zone (ULVZ) structures at the core-mantle boundary beneath East Asia. Data used in the study of Festin et al., 2024 (TSR) is included in this collection.
The data from the Digital Library Outreach and Instruction survey is intended to discover how digital library practitioners at various types of cultural institutions promote their unique resources, beyond simply placing content in an online repository for users to discover. Types of outreach investigated include social media promotion, integration of digital collections into teaching and instruction activities, and partnerships with external campus units or community organizations.
The purpose of this dataset is to use a full powered pilot sample (n=166) and a randomized waitlist control experimental design where participants are exposed to either the full intervention for 16 weeks or partial intervention for the first 8 weeks and then full intervention for weeks 9-16. All participants were given a follow-up survey 4 weeks after completing the intervention.
The measures included in this dataset are related to respite, respite time-use, and well-being.
These pilot data were used to assess feasibility and to explore hypotheses regarding the potential efficacy of the intervention, as well as the mechanism (i.e., time-use satisfaction) underlying the interventions effect on wellbeing.
This dataset is a retrospective study of de-identified electronic-medical record data of transgender and gender-diverse (TGD; i.e. those whose gender identity does not align with their sex assigned at birth) adults 18 years and older who receive gender-affirming care within the University of Utah healthcare system. Gender-affirming care includes gender-affirming hormone therapy (i.e. estrogen- or testosterone-based medications) and gender-affirming surgeries. The goal of creating this dataset is to contribute to the growing literature needed about the TGD population in order to facilitate public health efforts to address health disparities as well as answer clinically impactful questions.
The microbiology data represents the microorganisms recovered during the study period at the University of Utah hospital from samples collected from patients, environmental surfaces, and healthcare personnel (HCP) hands using premoistened sponges. Patient samples were collected daily from the axilla, groin, and perianal areas or stool. Environmental samples were collected daily from room surfaces and unit common areas (such as bed rails, overbed tables, door handles, computer keyboards, and other high-touch areas). HCP hands were periodically sampled upon HCP exit from a patient room after engaging in health care activities. Samples were collected from the 20-bed University of Utah Hospital Cardiovascular ICU (CVICU) over a 54 day period. The information from these datasets can be used to understand how different organisms appear and move throughout a hospital ward over a period of time.
This dataset contains room occupancy during the study period at University of Utah hospital. Admission, Discharge, and Transfer (ADT) data is captured in participating hospitals to characterize room occupancy and non-occupancy in wards. These data are pulled from multiple sources collected during the study by study staff as well as harvested EHR data. Data were adjudicated and compiled into one comprehensive file. Data manipulation included redaction of dates, replaced with study days 1-n, as well as transformation from long format to wide for ease of use.
The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard. This dataset contains cleaned event-level data processed from sensor pings of RFD reads between healthcare worker worn sensors and environmental sensors placed in facility using methods described in the "Data Cleaning Steps" section.
The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard. This dataset contains cleaned sensor pings of RFD reads between healthcare worker worn sensors and environmental sensors placed in facility using methods described in the "Data Cleaning Steps" section.
A comprehensive geochemical and stratigraphic study of Cretaceous coal-bearing strata in Utah and western Colorado was performed to evaluate geologic trends in REE-enrichment, as well as elucidate enrichment mechanisms. Preliminary portable X-ray fluorescence (pXRF) analyses (n = 5659) was combined with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) analyses (n = 135) on particularly REE-enriched samples. Sampling and analyses from active and historic mines as well as nearby cores and outcrops were performed with an emphasis on sedimentary, stratigraphic, geographic, and mining context.
This study aims to quantify rare earth element enrichment within coal and coal-adjacent strata in the Uinta Region of Utah and western Colorado. Rare earth elements are a subset of critical minerals used for renewable energy technology in the transition toward carbon-neutral energy. This data contains samples from seven active mines and seven stratigraphically complete cores within the Uinta Region, geochemically evaluated via portable X-ray fluorescence (n=3,113) and inductively coupled plasma-mass spectrometry (n=143) elemental abundance methods. Historical evaluations of geochemical data on Uinta Region coal and coal-adjacent data are sparse, emphasizing the statistical significance of this study’s analyses. These results support the utilization of active mines and coal processing waste piles for the future of domestic rare earth element extraction, offering economic and environmental solutions to pressing global demands.
This dataset provides access to data from personnel records of miner employment from 1900–1919. Records from the Utah Copper Company are handwritten and contain the following employee information: name, date employed, address, dependents, age, weight, height, eyes, hair, gender, and nationality. Data has been transcribed and released as a .tsv (Tab Separated Values) file. Technical metadata has been redacted.
This dataset encompasses the results of a series of controlled experiments conducted at the University of Utah's Industrial Hygiene Research Laboratory between November 2021 and November 2022. It includes data from tests assessing aerosol containment and surface contamination using the U-COVER device. The dataset details the effectiveness of different device designs (D1A, D1B, D2) in containing salt aerosols under various conditions, including with and without exhaust ventilation. Measurements were conducted using GRIMM Model 1.109 Portable Aerosol Spectrometers and analyzed for particle size distributions and concentrations. The findings provide insights into the protective capabilities of the U-COVER device in medical settings, with implications for healthcare worker safety."
Objectives: Falls in hospitals pose a significant safety risk, leading to injuries, prolonged hospitalization, and lasting complications. This study explores the potential of augmented reality (AR) technology in healthcare facility design to mitigate fall risk.
Background: Few studies have investigated the impact of hospital room layouts on falls due to the high cost of building physical prototypes. This study introduces an innovative approach using AR technology to advance methods for healthcare facility design efficiently.
Methods: Ten healthy participants enrolled in this study to examine different hospital room designs in AR. Factors of interest included room configuration, door type, exit side of the bed, toilet placement, and the presence of IV equipment. AR trackers captured trajectories of the body as participants navigated through these AR hospital layouts, providing insights into user behavior and preferences.
Results: Door type influenced the degree of backward and sideways movement, with the presence of an IV pole intensifying the interaction between door and room type, leading to increased sideways and backward motion. Participants displayed varying patterns of backward and sideways travel depending on the specific room configurations they encountered.
Conclusions: AR can be an efficient and cost-effective method to modify room configurations to identify important design factors before conducting physical testing. The results of this study provide valuable insights into the effect of environmental factors on movement patterns in simulated hospital rooms. These results highlight the importance of considering environmental factors, such as the type of door and bathroom location, when designing healthcare facilities.
Isotopic data in this database includes 863 samples from 34 papers and three previously published compilations. For each sample, this database provides location, age, and reference information presented in the first columns. Locations are recorded in latitude and longitude (WGS84). The information about the location source uses the same criteria used for the elemental geochemical database (“GPS”, “Figure-Polygon” and “Figure-Point”). Age is provided according to the original source and includes two general scenarios: an age with uncertainty at 2σ level and a general estimation for the age with no associated error. Sm-Nd and Rb-Sr data are based on whole rock analysis. Lu-Hf data are based on zircon analysis. Sm-Nd data includes Sm and Nd in ppm, 147Nd/144Nd and 143Nd/144Nd in ratios, Nd uncertainties at 2σ level, and Nd values in the epsilon notation as presented in the data source. Rb-Sr data include Rb and Sr in ppm; 87Rb/86Sr, 87Sr/86Sr, and initial 87Sr/86Sr in ratios, and Sr uncertainties at 2σ level. Lu-Hf data includes 176Yb/177Hf, 176Lu/177Hf, and 176Hf/177Hf rations and their uncertainties at 2σ level, the initial 176/177Hf ratio, Hf values in the epsilon notation and Hf uncertainties at 1σ and 2σ level, all as presented in the data source. Uncertainties related to the data location and heterogenous data distribution should be considered. Samples for the two batholiths in Mongolia are concentrated in central Mongolia and include Sm-Nd and Lu-Hf data. In the Erguna and Xing’an magmatic provinces, available samples provide mainly Lu-Hf data which are relatively better distributed than in the other regions.
This dataset contains code used to generate and the results of 2D numerical modeling simulations of ambient resonance in damaged rock slopes. All simulations were performed using the Universal Distinct Element Code (UDEC) version 7.0. We simulated progressive damage for three different landslide types: slab toppling, flexural toppling, and planar sliding. For each scenario we simulated several stages of progressive rock slope damage. Subsequently, we recorded the resonance response of the rock slope at each stage by measuring x-direction velocity at one or more measuring points throughout the model.
This data set contains 12-hour manual new snow and liquid precipitation equivalent (LPE) observations collected at the Alta-Collins (CLN) snow-study plot during the 2000–2023 cool seasons (October 1–April 30 with the year defined by the ending calendar year). CLN is located mid-mountain at Alta Ski Area in the Wasatch Range of northern Utah (approximately 111.63889W, 40.57607N) at an elevation of 2945 m.
The purpose of this derived dataset was to analyze menstrual cycle lengths in relation to lunar calendar. This datafile of start and end date of 3324 menstrual cycles of 581 women is part of a combined dataset of three cohorts of heterosexually active women who received instruction in the Creighton Model FertilityCare System (CrM) through centres across the United States and Canada. The CrM has standardised protocols for teaching women how to observe, record, and interpret daily vaginal discharge from bleeding and cervical fluid on a daily diary, called a CrM chart, and to use these standardised observations to identify the estimated time of ovulation and days when intercourse is likely to result in pregnancy. The cohorts included: "Creighton Model Effectiveness, Intentions, and Behaviours Assessment" (CEIBA) (2009–2013), a prospective cohort of women without known subfertility, aimed to evaluate and classify pregnancy rates and pregnancy intentions during use of the CrM; "Creighton Model MultiCenter Fecundability Study" (CMFS) (1990–1996), a retrospective cohort of presumably fertile and subfertile women using CrM, aimed to assess the relationship between vulvar mucus observations and the day and cycle-specific probabilities of conception; and "Time to Pregnancy in Normal Fertility" (TTP) (2003–2006), a parallel-randomised trial, which aimed to assess the impact of CrM use on time to pregnancy in couples of proven fertility trying to conceive. Each of the cohorts aimed to include heterosexually active couples with normal fecundity. Eligibility criteria were assessed by women's responses to the CrM general intake form and/or a screening questionnaire. Eligibility requirements in the original studies included women, age 18–40 years old (upper limit of 35 years for TTP), not pregnant at entry, having regular menstrual bleeding, and not breast feeding (CMFS and TTP), or if breast feeding, not doing so exclusively (CEIBA). Recent users of oral contraceptives had to have at least one menstrual bleed (CEIBA) or two menstrual bleeds (TTP) since stopping the oral contraceptives; however, for CMFS there was no restriction for time since discontinuing oral contraceptives. All studies also required normal menstrual patterns since last use of depo-medroxy-progesterone acetate or a hormonal intra-uterine device.
The COVID-19 pandemic disrupted scientific research, teaching, and learning in higher education and forced many institutions to explore new modalities in response to the abrupt shift to remote learning. Accordingly, many colleges and universities struggled to provide the training, technology, and best practices to support faculty and students, especially those at historically disadvantaged and underrepresented institutions. In this study we investigate different remote learning modalities to improve and enhance research education training for faculty and students. We specifically focus on Responsible and Ethical Conduct of Research (RECR) and Research Mentoring content to help address the newly established requirements of the National Science Foundation for investigators. To address this need we conducted a workshop to determine the effectiveness of three common research education modalities: Live Lecture, Podcast, and Reading. The Live Lecture sessions provided the most evidence of learning based on the comparison between pre- and post-test results, whereas the Podcast format was well received but produced a slight (and non-significant) decline in scores between the pre- and post-tests. The Reading format showed no significant improvement in learning. The results of our workshop illuminate the effectiveness and obstacles associated with various remote learning modalities, enabling us to pinpoint areas that require additional refinement and effort, including the addition of interactive media in Reading materials.
This dataset contains GIS map data and monitoring datasets collected between 2018 and 2022 at the Courthouse Mesa rock slope instability near Moab, Utah. Map data consist of an orthophoto, a polyline shapefile delineating mapped surficial cracks, and a point shapefile showing the locations of crack width monitoring points (M1–M5) and a vibrating wire crackmeter. Monitoring data include four years of continuous crack aperture measurements from the crackmeter, periodic crack width measurements from M1–M5, and three sets of air temperature measurements recorded between 2018 and 2022. Air temperatures were measured at the surface and inside the crack at several depths throughout the monitoring period.
In the element database, major elements are reported in weight percent oxide (wt%). Trace element concentrations are reported in parts per million (ppm). Available lithologic information (“lithology” column) and the type of igneous sample (intrusive or extrusive in the “Sample-Type” column) were included. The name of the area or of the corresponding igneous body were included when available (“Location/Body-Name” column). The location of the samples is reported in decimal degrees (WGS84), however, uncertainties explained below must be considered. Coordinates were obtained from three different ways of presenting the information about the location. The three scenarios are distinguished as “GPS”, “Figure-Point”, and “Figure-Polygon” in the “Location-Type” column. Samples with a location in a coordinate system were transformed to decimal degrees (WGS84) and classified as “GPS”. Samples individually identified in a georeferenced geologic map were approximately located after georeferencing the map in Google Earth or ArcGis (“Figure-Point”). Samples identified with a polygon in a georeferenced map (through age, body name or unidentified sample locations), but without more detailed information were approximately located in the middle of the corresponding polygon after georeferencing the map in Google Earth or ArcGis (“Figure-Polygon”). Precise “GPS” locations were obtained for 358 analyses, and approximate locations were obtained for 428 analyses. The age information was organized using three categories: “Age-Approximation”, “Age-number”, and “Age-Error”. “Age-approximation” corresponds to the age information from original paper or from an additional reference detailed in the “Reference-Age” column. “Age-number” corresponds to the age reported in the original paper or previous compilation, or to the average age calculated from a given age range. “Age-Error” corresponds to the error presented in the original paper or previous compilation, or to half of the age range. Information about the methods, analyzed material and laboratory name was included when available. Lastly, the original data sources are available in the “Reference” column. References from previous compilations incorporated in this database are specified as “Compilation-Reference”. Additional references used for constraining the age are detailed in “Reference-Age” column.
Data that were incorrectly reported (e.g., reporting average compositions instead of sample composition) or with anomalous trace element concentrations were filtered-out from the element database. Analyses from weathered or altered samples producing high total volatile content (LOI> 5 wt%) were removed. Samples with no available information to approximately locate them or to constrain their age were eliminated. Despite this screening process, the database suffers from uncertainties related to approximated ages and locations and variable information regarding the lithology, and availability of trace elements The inhomogeneity in this database is explicit and uncertainties related to the age and location should be carefully considered in any interpretation. The final compilation contains 787 geochemical analyses (major, minor and trace elements) and includes data from 36 studies.
Atypical atrial flutter is seen post-ablation in patients, and it can be challenging to map. These flutters are typically set up around areas of scar in the left atrium. MRI can reliably identify left atrial scar. We propose a personalized computational model using patient specific scar information, to generate a monodomain model. In the model conductivities are adjusted for different tissue regions and flutter was induced with a premature pacing protocol. The model was tested prospectively in patients undergoing atypical flutter ablation. The simulation-predicted flutters were visualized and presented to clinicians. Validation of the computational model was motivated by recording from electroanatomical mapping. These personalized models successfully predicted clinically observed atypical flutter circuits and at times even better than invasive maps leading to flutter termination at isthmus sites predicted by the model.
The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard.
This study investigates the internal facies architecture of a river-dominated delta deposit using outcrops of the Cretaceous Panther Tongue of the Star Point Sandstone in central Utah, U.S.A. A series of photorealistic virtual outcrop models (VOM) were created from ~13 linear-km of outcrop. These VOMs, alongside field observations, were used to identify and map facies and facies associations over the ~25 m-thick stratigraphic interval. A new workflow for querying VOMs as outcrop analogs for subsurface reservoir analogs was developed, using a database of measurements (Panther Tongue - outcrop analog - metric database) was constructed using 60 digital sections that were measured within the VOMs at 152 m (~500 ft) spacing. This database characterizes a total of 508 sandstone beds by their thickness, length, and dip, from which the average thickness (0.78 m), bed length (330 m), and bed dip (2˚ towards the south) were calculated. Thinning rates were also calculated in both depositional strike and depositional dip directions (1.37x10-2 and 1.01x10-2 respectively). The workflow established in this study is applicable to other sedimentary outcrops and environments, thus demonstrating that VOMs can be used as a basis for quantitative database development and reservoir modeling inputs.
The data was obtained from the FDTD simulations. For one of the FDTD simulations, the conductivity data for British Columbia was used in order to obtain the simulated data. The data obtained from simulations are post-processed using MATLAB for plotting the figures in the paper.
This dataset summarizes burial counts according to burial type (free, temporary, or perpetual) for the cemeteries of Père-Lachaise, Montmartre, and Montparnasse in Paris. The data covers the period of 1804 to 1840 and was derived from the digitized daily records of burial for the city of Paris, which are currently held in the Archives de Paris. See Registres journaliers d'inhumation https://archives.paris.fr/r/216/cimetieres). These data are organized by the number of each burial type recorded per page of the digitized records.
This dataset accounts for all jobs undertaken by the Société Le Roy Bouillon, a funerary monuments company in Paris, from 1890 to 1902. The first sheet, “Activity Data” accounts for each job and the fee charged to the client for that job. It also categories each job as either a new cemetery construction, maintenance to existing cemetery structures, or other jobs unrelated to cemetery construction. The second sheet, “Outside Paris,” summarizes the annual activity, recording the number of projects undertaken within Paris versus outside of the city, new constructions versus maintenance work, and revenue coming in from each type of job. The original records are currently housed in a private collection in Paris and were manually transcribed by the author.
The dataset was collected in the process of carrying out a research on the effects of photochemical aging and interactions with secondary organic aerosols on cellular toxicity of combustion particles between the year 2021 to 2022
This dataset is based on the 1816, two-volume publication, Le champ du repos, ou le Cimetière Mont-Louis, dit du Père Delachaise. Compiled over the course of 1815 by MM. Roger and Roger (a father-son team), Le champ du repos contains the epitaphs and scale drawing of over 2000 monuments present in the cemetery of Père-Lachaise (Paris, France) by the end of 1815. The author of this dataset has combined the information from this volume (including demographics of the deceased drawn from epitaphs, visual characteristics of monuments, and the locations of monuments within the cemetery) with data from the digitized records of burial available from the Archives de Paris ( https://archives.paris.fr/r/216/cimetieres/). Thus, this dataset details every known monument present in the Cemetery of Père-Lachaise by the end of 1815 with information about the type of burial (free, temporary, or perpetual) that it marked.
This dataset covers all of the marbriers (stonecutters) listed in the commercial almanacs for the city of Paris from 1798 to 1907. The author used the almanacs available digitally on the Bibliothèque nationale de France's digital library, Gallica (gallica.bnf.fr). The dataset was initially compiled to study the development of the funerary monuments industry in Paris, although the dataset aggregates all stonemasons' enterprises and ateliers regardless of their field of specialization. Binary variables are included in the dataset, based on text descriptions in the almanacs, to indicate named areas of specialization.
Historically, the compilation of the annual commercial almanacs was a project undertaken by two different publishers (Bottin and Firmin Didot), who eventually merged in 1857. Every year, in addition to the information that had already been collected, corrections and additions were solicited from the general public. According to the notice included at the beginning of the 1838 issue, listing in the almanac was (and always had been) free. If one wanted details in addition to a general category of work to be included in a record, individuals needed to contact the editor directly (there is no mention of what this might have cost). See: Sébastien Bottin, Almanach du commerce de Paris, des départemens de la France, et des principals villes du monde (Paris, 1838); and Firmin Didot et Bottin Réunis, Annuaire et almanac du commerce, de l’industrie, de la magistrature et de l’administration (Paris: 1857).