Search Constraints
1 - 4 of 4
Number of results to display per page
Search Results
-
- Description:
- We analyze a new set of 275 n-body calculations designed to place limits on the masses of the small circumbinary satellites in the Pluto-Charon system. Together with calculations reported in previous papers, we repeat that a robust upper limit on the total mass of the four satellites is ~ 9.5 x 10^19 g. For satellite volumes derived from \nh, this mass limit implies a robust upper limit on the bulk densities of Nix and Hydra, <=1.7 g/cm^3, that are comparable to the bulk density of Charon. Additional calculations demonstrate that satellite systems with mass <= 8.25 x 10^19 g are robustly stable over the current age of the Sun. The bulk densities of Nix and Hydra in these lower mass systems are clearly smaller than the bulk density of Charon. These new n-body\results enable accurate measurements of eccentricity and inclination for Nix, Kerberos, and Hydra that agree well with orbital elements derived from numerical calculations with new HST and New Horizons state vectors. With these new state vectors, Styx has a 37 % larger eccentricity and an 85% smaller inclination, which makes it more prone to gravitational perturbations from Nix.
- Keyword:
- dynamical evolution, Kerberos, Hydra, Nix, Charon, Pluto, planets, satellites, and Styx
- Subject:
- Astrophysics
- Creator:
- Kenyon, Scott J. and Bromley, Benjamin C.
- Owner:
- BENJAMIN BROMLEY
- Based Near Label Tesim:
- Greenbelt, Maryland, United States
- Language:
- English
- Date Uploaded:
- 01/29/2025
- Date Modified:
- 01/29/2025
- Date Created:
- 2022-03-26 to 2025-01-17
- License:
- CC BY NC - Allows others to use and share your data non-commercially and with attribution.
- Resource Type:
- Dataset
-
- Description:
- Using a suite of numerical calculations, we consider the long-term evolution of circumbinary debris from the Pluto--Charon giant impact. Initially, these solids have large eccentricity and pericenters near Charon's orbit. On time scales of 100--1000 yr, dynamical interactions with Pluto and Charon lead to the ejection of most solids from the system. As the dynamics moves particles away from the barycenter, collisional damping reduces the orbital eccentricity of many particles. These solids populate a circumbinary disk in the Pluto-Charon orbital plane; a large fraction of this material lies within a `satellite zone' that encompasses the orbits of Styx, Nix, Kerberos, and Hydra. Compared to the narrow rings generated from the debris of a collision between a trans-Neptunian object (TNO) and Charon, disks produced after the giant impact are much more extended and may be a less promising option for producing small circumbinary satellites.
- Keyword:
- circumbinary, Charon, NASA, Pluto, planetary science, astronomy, satellites, planets, and dynamical evolution
- Subject:
- Astronomy
- Creator:
- Bromley, Benjamin C. and Kenyon, Scott J.
- Owner:
- BENJAMIN BROMLEY
- Language:
- English
- Date Uploaded:
- 02/03/2021
- Date Modified:
- 10/25/2024
- Date Created:
- 2019-11-15 to 2020-02-20
- License:
- CC BY NC - Allows others to use and share your data non-commercially and with attribution.
- Resource Type:
- Dataset
- Identifier:
- https://doi.org/10.7278/S50DSSMBHHXN
-
- Description:
- . . .
- Keyword:
- Pluto, formation, and dynamical evolution
- Subject:
- dwarf planets: Pluto, planets and satellites: formation, and planets and satellites: dynamical evolution
- Creator:
- Bromley, Benjamin and Kenyon, Scott
- Owner:
- BENJAMIN BROMLEY
- Language:
- English
- Date Uploaded:
- 07/26/2019
- Date Modified:
- 10/03/2024
- Date Created:
- Unknown
- License:
- CC BY NC - Allows others to use and share your data non-commercially and with attribution.
- Resource Type:
- Dataset and Software or Program Code
- Identifier:
- https://doi.org/10.7278/S50D-EFCY-ZC00
-
- Description:
- . . .
- Keyword:
- Charon, NASA, Pluto, astronomy, satellites, stability, dynamical evolution, and planets
- Subject:
- astronomy, Charon, and planets
- Creator:
- Bromley, Benjamin C. and Kenyon, Scott J.
- Depositor:
- BRIAN MCBRIDE
- Owner:
- BENJAMIN BROMLEY
- Language:
- English
- Date Uploaded:
- 07/11/2019
- Date Modified:
- 10/03/2024
- Date Created:
- 2018-05-15 to 2018-12-14
- License:
- CC BY NC - Allows others to use and share your data non-commercially and with attribution.
- Resource Type:
- Software or Program Code and Dataset
- Identifier:
- https://doi.org/10.7278/s50d-w273-1gg0