The dynamic properties of freestanding rock landforms are a function of fundamental material and mechanical parameters, facilitating non-invasive vibration-based structural assessment. Characterization of resonant frequencies, mode shapes, and damping ratios, however, can be challenging at culturally-sensitive geologic features, such as rock arches, where physical access is limited. Using sparse ambient vibration measurements, we describe three resonant modes between 1 and 40 Hz for 17 natural arches in Utah spanning a range of lengths from 3 – 88 m. Modal polarization data are evaluated to combine field observations with 3-D numerical models. We find outcrop-scale elastic moduli vary from 0.8 to 8.0 GPa, correlated with diagenetic processes, and identify low damping at all sites. Dense-array cross-correlation results from an additional arch validate predictions of simple bending modes and fixed boundary conditions. Our results establish use of sparse ambient resonance measurements for structural assessment and monitoring of arches and similar freestanding geologic features.
This dataset contains GIS map data and monitoring datasets collected between 2018 and 2022 at the Courthouse Mesa rock slope instability near Moab, Utah. Map data consist of an orthophoto, a polyline shapefile delineating mapped surficial cracks, and a point shapefile showing the locations of crack width monitoring points (M1–M5) and a vibrating wire crackmeter. Monitoring data include four years of continuous crack aperture measurements from the crackmeter, periodic crack width measurements from M1–M5, and three sets of air temperature measurements recorded between 2018 and 2022. Air temperatures were measured at the surface and inside the crack at several depths throughout the monitoring period.
This dataset contains code used to generate and the results of 2D numerical modeling simulations of ambient resonance in damaged rock slopes. All simulations were performed using the Universal Distinct Element Code (UDEC) version 7.0. We simulated progressive damage for three different landslide types: slab toppling, flexural toppling, and planar sliding. For each scenario we simulated several stages of progressive rock slope damage. Subsequently, we recorded the resonance response of the rock slope at each stage by measuring x-direction velocity at one or more measuring points throughout the model.
The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard.
The purpose of this derived dataset was to analyze menstrual cycle lengths in relation to lunar calendar. This datafile of start and end date of 3324 menstrual cycles of 581 women is part of a combined dataset of three cohorts of heterosexually active women who received instruction in the Creighton Model FertilityCare System (CrM) through centres across the United States and Canada. The CrM has standardised protocols for teaching women how to observe, record, and interpret daily vaginal discharge from bleeding and cervical fluid on a daily diary, called a CrM chart, and to use these standardised observations to identify the estimated time of ovulation and days when intercourse is likely to result in pregnancy. The cohorts included: "Creighton Model Effectiveness, Intentions, and Behaviours Assessment" (CEIBA) (2009–2013), a prospective cohort of women without known subfertility, aimed to evaluate and classify pregnancy rates and pregnancy intentions during use of the CrM; "Creighton Model MultiCenter Fecundability Study" (CMFS) (1990–1996), a retrospective cohort of presumably fertile and subfertile women using CrM, aimed to assess the relationship between vulvar mucus observations and the day and cycle-specific probabilities of conception; and "Time to Pregnancy in Normal Fertility" (TTP) (2003–2006), a parallel-randomised trial, which aimed to assess the impact of CrM use on time to pregnancy in couples of proven fertility trying to conceive. Each of the cohorts aimed to include heterosexually active couples with normal fecundity. Eligibility criteria were assessed by women's responses to the CrM general intake form and/or a screening questionnaire. Eligibility requirements in the original studies included women, age 18–40 years old (upper limit of 35 years for TTP), not pregnant at entry, having regular menstrual bleeding, and not breast feeding (CMFS and TTP), or if breast feeding, not doing so exclusively (CEIBA). Recent users of oral contraceptives had to have at least one menstrual bleed (CEIBA) or two menstrual bleeds (TTP) since stopping the oral contraceptives; however, for CMFS there was no restriction for time since discontinuing oral contraceptives. All studies also required normal menstrual patterns since last use of depo-medroxy-progesterone acetate or a hormonal intra-uterine device.
The COVID-19 pandemic disrupted scientific research, teaching, and learning in higher education and forced many institutions to explore new modalities in response to the abrupt shift to remote learning. Accordingly, many colleges and universities struggled to provide the training, technology, and best practices to support faculty and students, especially those at historically disadvantaged and underrepresented institutions. In this study we investigate different remote learning modalities to improve and enhance research education training for faculty and students. We specifically focus on Responsible and Ethical Conduct of Research (RECR) and Research Mentoring content to help address the newly established requirements of the National Science Foundation for investigators. To address this need we conducted a workshop to determine the effectiveness of three common research education modalities: Live Lecture, Podcast, and Reading. The Live Lecture sessions provided the most evidence of learning based on the comparison between pre- and post-test results, whereas the Podcast format was well received but produced a slight (and non-significant) decline in scores between the pre- and post-tests. The Reading format showed no significant improvement in learning. The results of our workshop illuminate the effectiveness and obstacles associated with various remote learning modalities, enabling us to pinpoint areas that require additional refinement and effort, including the addition of interactive media in Reading materials.