This dataset containts post-processed data from 3 radiative-convective equilibrium simulations run by the System for Atmospheric Modeling (SAM). The scripts to produce the data and recreate the figures/tables of Garrett et al. 20XX are also included. SAM's configuration files and restart files are provided for those interested in recreating the full dataset of the simulations or creating new test cases.
This dataset includes the GEOS-Chem model output and python scripts required to reproduce work outlined in 'Potential Air Quality Side-Effects of Emitting H2O2 to Enhance Methane Oxidation as a Climate Solution' by Mayhew and Haskins. The study investigates the predicted change to a selection of air pollutants resulting from the addition of elevated point sources of H2O2 to GEOS-Chem to simulate a proposed methane mitigation technology. The efficiency of this technology is also assessed according to a simplified theoretical framework which is tested against the GEOS-Chem output.
Skull thickness distributions were collected from infants under 12 months of age (n=266). Data-driven age groups were established based on the variability of skull thickness with age. By providing anatomical standards and guidelines for each age and sex group, this work aims to improve consistency in infant head trauma modeling studies.
This is a data set for generating current densities used for the validation of two methods. Similarly, it gives the electric fields for the 80-minute validation of the two methods. Furthermore, the partial transfer function method calculated electric fields are also deposited in this dataset. Similarly, the spectrum of each source and impulse response obtained from the FDTD model are also included. Finally, the electric fields were obtained for 8 hours using the PTF method.
Whole-cell recordings from the anuran inferior colliculus. The data is averaged & representative whole-cell recordings, stats and code used for the analysis.
Data were collected from the free online available International Ionosphere Reference (IRI) database ( https://kauai.ccmc.gsfc.nasa.gov/instantrun/iri) for January 1, 2020. The data were then interpolated from 1km to our desired resolution of 0.1km. This is is profile used to simulate the 3D FDTD models to observe the propagation of power line harmonic radiation through the ionosphere.
This repository includes all seismograms we used for the 58 earthquakes occurring in the New Guinea area and recorded in North America that our analyzed in our paper: Investigating ultra-low velocity zones as sources of PKP scattering beneath North America and the Western Pacific Ocean: Potential links to subducted oceanic crust. AGU Advances, in review.
This dataset includes seismic waveforms for an event used in the study "Effects of 2.5-D ultra-low and ultra-high velocity zones on flip-reverse-stacking (FRS) of the ScS wavefield". In addition, because ultra-high velocity zone (UHVZ) synthetic computations can be challenging when using ray based methods, we include our full waveform solutions for 1-D and 2.5-D UHVZ models as discussed in our manuscript. These can be used to benchmark other methods.
This dataset includes electrical resistivity tomography (ERT) measurements collected around the Great Salt Lake (GSL). This was supported through an NSF Rapid proposal. These preliminary measurements form a baseline by which to do ERT measurements to detect ground-water changes around GSL.
The spectral data required to reproduce the results from the paper "Intraoperative characterization of cardiac tissue: the potential of light scattering spectroscopy," published in the Journal of Biomedical Optics.
We conducted a qualitative study using a phenomenological approach in India’s Spiti Valley between August and October 2023. Sixteen individuals, age 18 years and older, participated in one-on-one interviews. The interviews were transcribed from Hindi into English, reviewed for accuracy by a native speaker, and imported into Dedoose software. Data were analyzed using inductive coding. These are the raw data sheets associated with this study. Ethics approval was provided by the University of Utah’s Institutional Review Board (IRB:00167060).
This collection includes radial component displacement seismograms in the time window including the SKS, SKKS and SPdKS seismic arrivals. These data all interact with ultra-low velocity zone (ULVZ) structures at the core-mantle boundary beneath East Asia. Data used in the study of Festin et al., 2024 (TSR) is included in this collection.
The data from the Digital Library Outreach and Instruction survey is intended to discover how digital library practitioners at various types of cultural institutions promote their unique resources, beyond simply placing content in an online repository for users to discover. Types of outreach investigated include social media promotion, integration of digital collections into teaching and instruction activities, and partnerships with external campus units or community organizations.
The microbiology data represents the microorganisms recovered during the study period at the University of Utah hospital from samples collected from patients, environmental surfaces, and healthcare personnel (HCP) hands using premoistened sponges. Patient samples were collected daily from the axilla, groin, and perianal areas or stool. Environmental samples were collected daily from room surfaces and unit common areas (such as bed rails, overbed tables, door handles, computer keyboards, and other high-touch areas). HCP hands were periodically sampled upon HCP exit from a patient room after engaging in health care activities. Samples were collected from the 20-bed University of Utah Hospital Cardiovascular ICU (CVICU) over a 54 day period. The information from these datasets can be used to understand how different organisms appear and move throughout a hospital ward over a period of time.
This dataset contains room occupancy during the study period at University of Utah hospital. Admission, Discharge, and Transfer (ADT) data is captured in participating hospitals to characterize room occupancy and non-occupancy in wards. These data are pulled from multiple sources collected during the study by study staff as well as harvested EHR data. Data were adjudicated and compiled into one comprehensive file. Data manipulation included redaction of dates, replaced with study days 1-n, as well as transformation from long format to wide for ease of use.
The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard. This dataset contains cleaned event-level data processed from sensor pings of RFD reads between healthcare worker worn sensors and environmental sensors placed in facility using methods described in the "Data Cleaning Steps" section.
The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard. This dataset contains cleaned sensor pings of RFD reads between healthcare worker worn sensors and environmental sensors placed in facility using methods described in the "Data Cleaning Steps" section.
A comprehensive geochemical and stratigraphic study of Cretaceous coal-bearing strata in Utah and western Colorado was performed to evaluate geologic trends in REE-enrichment, as well as elucidate enrichment mechanisms. Preliminary portable X-ray fluorescence (pXRF) analyses (n = 5659) was combined with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) analyses (n = 135) on particularly REE-enriched samples. Sampling and analyses from active and historic mines as well as nearby cores and outcrops were performed with an emphasis on sedimentary, stratigraphic, geographic, and mining context.
This study aims to quantify rare earth element enrichment within coal and coal-adjacent strata in the Uinta Region of Utah and western Colorado. Rare earth elements are a subset of critical minerals used for renewable energy technology in the transition toward carbon-neutral energy. This data contains samples from seven active mines and seven stratigraphically complete cores within the Uinta Region, geochemically evaluated via portable X-ray fluorescence (n=3,113) and inductively coupled plasma-mass spectrometry (n=143) elemental abundance methods. Historical evaluations of geochemical data on Uinta Region coal and coal-adjacent data are sparse, emphasizing the statistical significance of this study’s analyses. These results support the utilization of active mines and coal processing waste piles for the future of domestic rare earth element extraction, offering economic and environmental solutions to pressing global demands.