Search Constraints
Filtering by:
Creator
Loew, Simon
Remove constraint Creator: Loew, Simon
Creator
Limpach, Philippe
Remove constraint Creator: Limpach, Philippe
Resource type
Dataset
Remove constraint Resource type: Dataset
1 entry found
Number of results to display per page
Search Results
-
- Description:
- Subglacial water pressures influence groundwater conditions in proximal alpine valley rock slopes, varying with glacier advance and retreat in parallel with changing ice thickness. Fluctuating groundwater pressures in turn increase or reduce effective joint normal stresses, affecting the yield strength of discontinuities. Here we extend simplified assumptions of glacial debuttressing to investigate how glacier loading cycles together with changing groundwater pressures generate rock slope damage and prepare future slope instabilities. Using hydromechanical coupled numerical models closely based on the Aletsch Glacier valley in Switzerland, we simulate Late Pleistocene and Holocene glacier loading cycles including long-term and annual groundwater fluctuations. Measurements of transient subglacial water pressures from ice boreholes in the Aletsch Glacier ablation area, as well as continuous monitoring of bedrock deformation from permanent GNSS stations helps verify our model assumptions. While purely mechanical glacier loading cycles create only limited rock slope damage in our models, introducing a fluctuating groundwater table generates substantial new fracturing. Superposed annual groundwater cycles increase predicted damage. The cumulative effects are capable of destabilizing the eastern valley flank of our model in toppling-mode failure, similar to field observations of active landslide geometry and kinematics. We find that hydromechanical fatigue is most effective acting in combination with long-term loading and unloading of the slope during glacial cycles. Our results demonstrate that hydromechanical stresses associated with glacial cycles are capable of generating substantial rock slope damage and represent a key preparatory factor for paraglacial slope instabilities.
- Keyword:
- Aletsch Glacier, boreholes, numerical models, subglacial water pressure, Switzerland, Late Pleistocene, Holocene, ground water, and geology
- Subject:
- Geology
- Creator:
- Moore, Jeffrey R., Loew, Simon, Limpach, Philippe, Gischig, Valentin, Grämiger, Lorenz, and Funk, Martin
- Owner:
- Jeff Moore
- Based Near Label Tesim:
- Aletsch Glacier, Valais, Switzerland
- Language:
- English
- Date Uploaded:
- 01/03/2020
- Date Modified:
- 10/29/2024
- Date Created:
- Borehole P1 2013-07-12 09:28:09 to 2014-08-08 09:11:14 and Borehole P2: 2013-07-16 05:00:03 to 2014-08-08 22:10:44
- License:
- CC BY NC - Allows others to use and share your data non-commercially and with attribution.
- Resource Type:
- Dataset
- Identifier:
- https://doi.org/10.7278/S50D-A50H-3TE4