The Purkinje system (PS) and the His bundle have been recently implicated as an important driver of the rapid activation rate after 1-2 minutes of ventricular fibrillation (VF). It is unknown whether activations during VF propagate through the His-Purkinje system to other portions of the the working myocardium (WM). Little is known about restitution characteristic differences between the His bundle and working myocardium at short cycle lengths. In this study, rabbit hearts (n=9) were isolated, Langendorff- perfused, and electromechanically uncoupled with blebbistatin (10 μM). Pacing pulses were delivered directly to the His bundle. By using standard glass microelectrodes, action potentials duration (APD) from the His bundle and WM were obtained simultaneously over a wide range of stimulation cycle lengths (CL). The global F-test indicated that the two restitution curves of the His bundle and the WM are statistically significantly different (P<0.05). Also, the APD of the His bundle was significantly shorter than that of WM throughout the whole pacing course (P<0.001). The CL at which alternans developed in the His bundle vs. the WM were shorter for the His bundle (134.2±13.1ms vs. 148.3±13.3ms, P<0.01) and 2:1 block developed at a shorter CL in the His bundle than in WM (130.0±10.0 vs. 145.6±14.2ms, P<0.01). The His bundle APD was significantly shorter than that of WM under both slow and rapid pacing rates, which suggest that there may be an excitable gap during VF and that the His bundle may conduct wavefronts from one bundle branch to the other at short cycle lengths and during VF.