We analyzed 4,754 broadband seismic recordings of the SKS, SKKS, and SPdKS wavefield from 13 high quality events sampling the Samoa ultralow-velocity zone (ULVZ). We measured differential travel-times and amplitudes between the SKKS and SKS arrivals, which are highly sensitive to the emergence of the SPdKS seismic phase, which is in turn highly sensitive to lowermost mantle velocity perturbations such as generated by ULVZs. We modeled these data using a 2-D axi-symmetric waveform modeling approach and are able to explain these data with a single ULVZ. In order to predict both travel-time and amplitude perturbations we found that a large ULVZ length in the great circle arc direction on the order of 10° or larger is required. The large ULVZ length limits acceptable ULVZ elastic parameters. Here we find that δVS and δVP reductions from 20% to 22% and 15% to 17% respectively gives us the best fit, with a thickness of 26 km. Initial 3-D modeling efforts do not recover the extremes in the differential measurements, demonstrating that 3-D effects are important and must be considered in the future. However, the 3-D modeling is generally consistent with the velocity reductions recovered with the 2-D modeling. These velocity reductions are compatible with a compositional component to the ULVZ. Furthermore, geodynamic predictions for a compositional ULVZ that is moving predict a long linear shape similar to the shape of the Samoa ULVZ we confirm in this study.
and This collection includes radial component displacement seismograms in the time window including the SKS, SKKS and SPdKS seismic arrivals. These data all interact with the Samoa ultra-low velocity zone at the core-mantle boundary. All data used in the study of Krier et al., 2021 (JGR) is included in this collection.