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ABSTRACT 

 

The accuracy of precipitation forecasts from the High-Resolution Rapid Refresh 

model (HRRR) of the National Centers for Environmental Prediction and the Navy’s 

Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) is examined 

during atmospheric river (AR) events in California. ARs are long, narrow, and transient 

corridors of strong horizontal water vapor transport that produce substantial amounts of 

precipitation and often result in flooding along the west coast of the United States and 

other coastal regions of the world. The initial 12-h precipitation forecasts from HRRR 

and COAMPS are validated relative to Stage-IV gridded precipitation analyses for an AR 

event during 6-8 December 2019 and during the entire 1 December 2018 – 28 February 

2019 period.  

The 6-8 December 2019 case study examines the integrated water vapor transport 

(IVT) analyzed and forecasted by the two models. COAMPS predicted weaker IVT 

impinging upon the California coast than HRRR, yet forecasted higher precipitation 

totals. Both models underestimated precipitation amounts along the coast to the north of 

San Francisco that may have arisen due to more frequent forecasts of winds directed 

slightly offshore than observed.  

During the 2018-19 winter, both models had higher precipitation accuracy during 

AR events than during non-AR events, which are characterized by lower precipitation 

totals and generally less organized synoptic setting. Overall, COAMPS exhibited very 
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large wet biases over interior mountainous regions while HRRR biases were much 

smaller in those regions. Both models tended to underestimate precipitation along the 

coastal mountains of northern California.  Based on the Fraction Skill Score (FSS) metric 

applied separately over specific ranges, HRRR had higher precipitation forecast skill 

compared to COAMPS, particularly within distances of 30-40 km and moderate 12-h 

precipitation totals of 10-50 mm.  
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CHAPTER 1

 

INTRODUCTION 

 

California has the largest interannual variability in precipitation of any state, 

receiving almost the entirety of its yearly precipitation in the winter months, with 25-50% 

of the state’s rainfall and snowpack being directly related to atmospheric rivers (Dettinger 

et al. 2011; Ralph et al. 2013; Rutz et al. 2014). Atmospheric rivers (ARs) are long, 

narrow, and transient corridors of strong horizontal water vapor transport that are 

typically associated with a low-level jet ahead of the cold front of an extratropical 

cyclone (American Meteorological Society 2018; Ralph et al. 2018). ARs are associated 

with 92% of the West Coast’s heaviest 3-day rain events (Ralph and Dettinger 2012), are 

responsible for 40-90% of major floods in West Coast rivers (Ralph et al. 2006; Neiman 

et al. 2011; Konrad and Dettinger 2017), and cause 68% of postfire debris flows in 

Southern California (Oakley et al. 2010; Young et al. 2017; Hatchett et al. 2017). 

However, ARs also supply nearly half of California’s water supply, end droughts in the 

West Coast, and provide water to wetlands, floodplains, and fisheries to allow the local 

ecology to thrive (Dettinger 2013; Florsheim and Dettinger 2015).  

Several studies have evaluated how well operational numerical weather prediction 

(NWP) models forecast AR events on a synoptic scale (Wick et al. 2013; Nayak et al. 

2014, Lavers et al. 2016, Nardi et al. 2018). Synoptic models have been shown to forecast 
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integrated water vapor transport (IVT) and AR location with good skill up to a week. As 

forecast lead time increases beyond that, forecast skill drops considerably. At shorter 

forecast lead times (1-3 days), the model’s location errors reduce to roughly 100 km from 

actual landfall, which is important for flood forecasting. However, forecasts of the 

intensity and temporal evolution of AR events can change significantly in the 72-h period 

before landfall (Martin et al. 2019). Being able to provide accurate forecasts with as 

much lead time as possible is essential for public safety personnel to take the appropriate 

actions to protect life and property.  

Although AR events are associated with widespread precipitation accumulations, 

flooding during these events usually takes place at local scales and weather conditions 

can change rapidly. An example where flooding frequently occurs is the Russian River 

Basin in northern California (Ralph et al. 2006; Dettinger et al. 2011; Cao et al. 2019), 

which is embedded within the complex terrain of the coastal mountains where landfalling 

ARs interact with topography, resulting in enhanced precipitation (Neiman et al. 2002; 

Colle 2004; Kunz and Wassermann 2011; Picard and Mass 2017). Millions of people are 

also at risk during high-impact precipitation events in the San Francisco Bay region 

immediately south of the Russian River Basin (Bridger et al. 2019).  

Gowan et al. (2018) showed that high-resolution models outperformed operational 

models with poorer resolution for wintertime precipitation in the western contiguous 

United States (western CONUS). Therefore, it is important to evaluate how well high-

resolution NWP models forecast these events at short time periods. The skill of high-

resolution models for AR events has been of high interest, particularly since the transition 

of weather systems as they move onshore presents challenges for forecast models (Wick 
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et al. 2013; Swain 2015; Martin et al. 2019; Bridger et al. 2019).  

This study addresses the ability of two mesoscale models to forecast AR and non-

AR event precipitation in the California region during the 2018-19 winter season: (1) the 

National Centers for Environmental Prediction’s (NCEP) High-Resolution Rapid Refresh 

model (hereafter referred to simply as HRRR) and (2) the Naval Research Lab’s (NRL) 

Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS). Comparisons are 

made of forecast skill from those two models that continue to undergo improvements to 

the frozen operational North American Mesoscale Forecast System (NAM-3km) of the 

NCEP (Rogers et al. 2017).  

HRRR is an hourly updated, convection-allowing model (Benjamin et al. 2016). 

Its 3-km grid spacing provides high-resolution detail over the CONUS at over 1.9 million 

grid points. HRRR analysis and selected forecast fields are available via a publicly 

accessible archive maintained at the University of Utah (Blaylock et al. 2017). That 

archive has been used in several dozen studies (e.g., McCorkle et al. 2018; Blaylock et al. 

2019; Blaylock et al. 2020; Moore et al. 2020). Darby et al. (2019) suggest that HRRR 

has a tendency to underpredict precipitation along the west coast based on their analysis 

for the 2015-2016 winter. 

COAMPS is the Navy’s high-resolution, convection-allowing model that has 4-

km grid spacing (Hodur 1997). COAMPS is primarily used operationally for defense 

applications pertaining to naval operations, but model output is also publicly available for 

a coastal California domain. COAMPS regional California domain studies have tended to 

focus on air-sea interactions, including the system’s ability to forecast oceanic coastal 

circulations, offshore surface winds and low clouds, marine boundary layer structure, and 
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sea surface temperatures (e.g., Haack and Burk 2001; Hsu et al. 2007; Haack et al. 2008; 

Neveu et al. 2016). A recent study by Stone et al. (2020) focused on the improvement of 

forecasts during AR events along the west coast for the Navy Global Environmental 

Model (NAVGEM), COAMPS parent model, by adding in-situ observations from 

dropsondes. However, there appear to have been no published studies that validate 

COAMPS for regional California precipitation. COAMPS has been shown to poorly 

predict precipitation structure and duration compared to observations as well as errors in 

forecasted precipitation and wind speeds in areas of complex terrain (Nachamkin and Jin 

2017; Reynolds et al. 2019; Doyle et al. 2019).  

The objective of this study is to contribute to future model improvements for 

HRRR and COAMPS by diagnosing the ability of each modeling system to accurately 

forecast precipitation during AR events relative to that forecast during non-AR 

precipitation related events in the California region. The complexity of terrain-flow 

interactions and orographic enhancement in the coastal and interior regions of the state 

are challenging for operational models and relevant to other regions for which the models 

are used. To address this objective, several steps are taken: 

1. Validate Stage-IV gridded precipitation analyses produced by the NCEP (Lin and 

Mitchell 2005) relative to observed precipitation at hundreds of locations in the 

region;  

2. Examine in greater detail the Integrated Water Vapor Transport (IVT) analyzed 

and forecasted by HRRR and COAMPS during the 6-8 December 2019 AR event 

for which more complete sets of forecast fields are available;  

3. Validate the initial 12-h precipitation forecasts (F01-F12) from HRRR and 
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COAMPS relative to the Stage-IV gridded precipitation analyses during the 6-8 

December 2019 AR event and entire December 1, 2018 – February 28, 2019 

period; and 

4. Evaluate the use of a Fraction Skill Score (FSS) metric applied separately over 

specific ranges of precipitation values to assess the relative model performance as 

a function of precipitation intensity and spatial scales within which the 

precipitation has fallen.  

The details of the precipitation observations, Stage-IV precipitation analyses, 

and operational models used for this research are outlined in Chapter 2. Validation of 

the Stage-IV gridded analyses, the 6-8 December 2019 AR case study, and 

cumulative statistics from the F01-F12 precipitation forecasts from HRRR, 

COAMPS, and NAM-3km during the 2018-2019 season follow in Chapter 3. A 

summary of this research and future work that could be undertaken are found in 

Chapter 4.  
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CHAPTER 2

DATA AND METHODS 

 

2.1 Operational Models 

2.1.1 HRRRv3 

HRRR was developed by the Earth Systems Research Lab (ESRL) and is run 

operationally by the Environmental Modeling Center of the NCEP. It is a convection-

allowing, hourly updated model with 3-km grid spacing over the CONUS, as shown in 

Figure 2.1a (Benjamin et al. 2016). The model produces forecasts from F00 to F18 every 

hour except at 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC when the forecasts 

extend from F00 to F36. HRRR uses the NOAA Gridpoint Statistical Interpolation (GSI) 

data assimilation process (Wu et al. 2002; Whitaker et al. 2008; Kleist et al. 2009) as well 

as an assimilation of radar reflectivity every 15 minutes over 1 hour (Benjamin et al. 

2016). Model characteristics are summarized in Table 2.1. HRRR output is available 

from the Pando archive system at the University of Utah’s Center for High-Performance 

Computing described by Blaylock et al. (2017a). 
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2.1.2 COAMPS 

COAMPS was developed by the Marine Meteorological Division of the NRL and 

is run operationally by the Fleet Numerical Meteorology and Oceanography Center. The 

model uses 4-km grid spacing and can be applied as a nested grid anywhere on the globe 

(Hodur 1997). COAMPS can be configured as standalone atmosphere or ocean forecast 

model or run as a coupled modeling system. This research relies on coupled model 

simulations run routinely over a Northern and Central California domain with forecasts 

extending out to 48 h (Fig. 2.1). The model is initialized daily at 0000, 0600, 1200, and 

1800 UTC using the Naval Research Laboratory’s Atmospheric Variational Data 

Assimilation System (NAVDAS; Daley and Barker 2001) and includes a vertical domain 

of 30 sigma-z levels from 10 m to approximately 30 km. Model characteristics are 

summarized in Table 2.1. COAMPS output were downloaded from NRL disk servers. 

However, the 0600 and 1800 UTC model runs are not saved, so only the 0000 and 1200 

UTC forecasts are available for this research. 

 

2.1.3 NAM-3km 

 NAM-3km is also run operationally by the NCEP and underwent its final upgrade 

in 2017 (Rogers et al. 2017). NAM-3km is used in this research to compare the skill of 

HRRR and COAMPS to a frozen model. NAM-3km has a horizontal resolution of 3km 

over the CONUS, matching the same domain as HRRR. It is initialized daily at 0000, 

0600, 1200, and 1800 UTC and produces hourly forecasts out to 60 h. Many of the model 

specifications for NAM-3km are the same as HRRR as summarized in Table 2.1. 

Selected fields from the NAM-3km are downloaded from the NOAA Operational Model 
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Archive and Distribution System (NOMADS) and saved locally on servers maintained by 

the Center for High Performance Computing. 

This study focuses on the December 2018 - February 2019 season that was a very 

active period for ARs in California. Within that 3-month period, there were eight AR 

periods ranging from weak to extremely strong events according to the AR scale 

proposed by Ralph et al. (2019). Figure 2.2 shows the average Stage-IV 12-h measured 

precipitation in the research domain from 0000 UTC 1 December 2018 to 12 UTC 28 

February 2019. The periods in red indicate times when AR plumes with IVT values 

greater than 250 𝑘𝑔 𝑚−1 𝑠−1 affected the California region. AR events are extended up 

to 12 h if extensive precipitation continues in the region where IVT exceeded 250 

𝑘𝑔 𝑚−1 𝑠−1 during the previous 12 h-period. The periods in blue indicate times (often 

preceding or following the AR periods) when precipitation did not appear to be related 

directly to ARs. For 12-h periods where total accumulated precipitation in the research 

domain was on average greater than 0.01 inches (0.254 mm), there were 53 periods 

where 12 h accumulated precipitation were subjectively assigned to take place during AR 

events and 49 periods where 12 h accumulated precipitation was not related to ARs. 

 

2.2 Precipitation Observations and Analysis Data 

Surface observations were accessed from Synoptic Data PBC, which is providing 

improved access to environmental observations from the approach originally developed 

by MesoWest (Horel et al. 2002). Synoptic Data’s Mesonet Application Programming 

Interface provides real-time and archived data from over 50,000 surface observation 

stations in North America. California is an ideal place for this research as there are over 
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4000 active observing sites within its borders.  This research relies on networks that tend 

to have precipitation observations appropriate for this study: National Weather Service 

(NWS), Remote Automated Weather Stations (RAWS), and Hydrometeorological 

Automated Data System (HADS). A total of 1573 stations from these three networks are 

available in the research domain shown in Figure 2.3. NWS sites are primarily at airports 

to support aviation applications and rely on heated tipping buckets supplemented by 

manual observations at some locations. The RAWS network is intended to monitor 

warm-season fire weather conditions for which heated tipping buckets are generally not 

required (Zachariassen et al. 2003; Horel and Dong 2010). Hence, precipitation reported 

during winter from RAWS stations at high elevation are not used. The HADS network 

supports the NWS Weather Forecast Offices (WFO) for the Flood and Flashflood 

Warning programs as well as River Forecast Center (RFC) operations. In addition, the 

network aids in fire weather support, analysis of precipitation events, hydrological and 

meteorological modeling, and the verification of NEXRAD precipitation estimates (Kim 

et al. 2009). HADS produces hourly precipitation data and uses a variety of rain gauge 

types depending on the contributing agency, but generally are either weighing or tipping 

buckets.  

Automated and manual quality control steps were applied to hourly interval 

precipitation observations and only stations that reported all 180 12-h increments from 

0000 UTC 1 December 2018 to 0000 UTC 1 March 2019 were included. Those steps led 

to a reduction from the 1573 available stations to a total of 864 stations, as shown in 

Figure 2.3:  101, 427, and 336 stations from NWS, RAWS, and HADS networks, 

respectively.   
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The 6 h Stage-IV precipitation gridded analyses produced by the NCEP (Lin and 

Mitchell, 2005) are a valuable resource for evaluating HRRR, COAMPS, and NAM 

forecasts. These precipitation analyses are a national multisensor analysis at 4-km grid 

spacing over the CONUS that is blended from River Forecast Center (RFC) 1-h and 6-h 

precipitation. The California Nevada RFC and the Northwest RFC products cover the 

research domain and use the PRISM/Mountain Mapper approach to produce gauge-based 

analyses (Hou et al. 2014). 

 

2.3 Verification Methods 

 Statistical metrics based on the standard 2 × 2 contingency table (Table 2.2) are 

used to evaluate deterministic precipitation forecasts, including: 

Hit rate  =
𝑎

𝑎 + 𝑐
=  

hits

observed events
, 

Frequency bias =
𝑎 + 𝑏

𝑎 + 𝑐
=  

forecasted events

observed events
, 

False alarm ratio =
𝑏

𝑎 + 𝑏
=  

false alarms

forcasted events
, 

Equitable Threat Score (ETS) =
𝑎 − 𝑎ref

𝑎 −  𝑎ref + 𝑏 + 𝑐
 , 

where 

𝑎ref =  
(𝑎+𝑐)×(𝑎+𝑏)

𝑛
 . 

The hit rate, which is also known as the probability of detection (POD), is the fraction of 

occurrences that were correctly forecasted. The frequency bias is the ratio of the total 

number of events forecasted to the total number of events observed. The false alarm ratio 

is the fraction of forecasts that were predicted, but did not occur. The ETS is the 
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proportion of observed and/or forecasted events that were correctly forecasted, adjusted 

for the frequency of hits expected by chance (climatology).  

 While the above statistical measures provide good insight on model skill, they are 

point-based statistics and do not evaluate how forecast skill varies spatially. The fractions 

skill score (FSS) is a verification method that measures how forecast skill varies with 

spatial scale for different precipitation thresholds (Roberts and Lean 2008; Blaylock and 

Horel 2020). The main advantage of FSS over point-based verification is that it is less 

sensitive to localized errors and provides information at which spatial scales model 

forecasts are skillful (Wolff et al. 2014). 

The FSS is computed as one minus the fractional area mean square error within 

each neighborhood throughout the verification domain divided by the maximum possible 

mean square error in each of those neighborhoods. FSS is computed iteratively for 

increasing neighborhood sizes and calculated independently for every neighborhood 

throughout the entire domain. The FSS metric has an important advantage because it 

evaluates  how forecast skill varies with neighborhood size and what neighborhood sizes 

provide the most skillful forecasts (Mittermaier and Roberts 2010). Traditionally, the FSS 

is calculated using a square neighborhood for simplicity. Relying on square 

neighborhoods can affect the results if features are located near the corner of a square 

(Skok 2016; Skok and Roberts 2016). Hence, FSS is calculated here using circular 

neighborhoods with radii from 3 km (a signle gridpoint)  to 70 km. The FSS ranges from 

zero, which is a forecast with no skill, to one, which is a forecast with perfect skill. As the 

neighborhood size is increased, FSS increases and asymptotes for an unbiased forecast to 

one indicating a perfect score. When biases exist, the score will asymptote below one 



12 

 

 

 

(Roberts and Lean 2008).  

As discussed by Blaylock and Horel (2020), FSS assesses location errors of 

forecasts. FSS provides no information on the spatial structure of precipitation, but it 

does compare the relative coverage of the precipitation observed and forecasted as a 

function of spatial scale—FSS increases as observed and forecasted precipitation overlap 

more. High FSS values indicate useful forecasts when computed within small distances. 

As the spatial scale is increased, it is much more likely that the predicted precipitation 

will overlap that observed.  While the FSS is very useful to determine how forecast skill 

varies with neighborhood size, it is similar to the ETS metric in that a skillful forecast is 

judged to be one simply greater than or equal to a given threshold. That approach inhibits 

assessing whether the model forecast is much greater than the threshold within that 

neighborhood. To address this issue, FSS within threshold ranges is also used to evaluate 

model accuracy of precipitation intensity.  
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Table 2.1. Characteristics of forecast models. 

 

Model 

 

Domain 

 

Grid Points 

 

Grid Spacing (km) 

 

Vertical 

Levels 

 

Vertical 

Coordinate 

HRRR CONUS 1799x1059 3 50 Sigma-Isob 

Hybrid 

COAMPS Central and 

Northern 

California 

 

361x301 4 60 Sigma 

NAM-3km CONUS 1799x1059 3 60 Hybrid 

sigma-

pressure 

 

Model Initialized Assimilation Radar DA Microphysics Radiation 

HRRR Hourly GSI Hybrid 

Ensemble to 

0.85 

 

Yes Thompson and 

Eidhammer 

(2014) 

RRTMG 

COAMPS 0000, 0600, 

1200, 1800 

UTC 

NAVDAS 

(Daley and 

Barker 2001) 

 

No Schmidt 

(2001) 

Fu-Liou: 

Liu et al. 

(2003) 

NAM-3km 0000, 0600, 

1200, 1800 

UTC 

GSI Hybrid 

Ensemble 
Yes Ferrier-Aligo 

(2018) 

RRTM 
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Table 2.2. Contingency table used for validation. 

  Observed 

  Yes No Total 

Forecast Yes Hit (a) False Alarm (b) a + b 

 No Miss (c) Correct Rejection 

(d) 

c + d 

 Total a + c b + d n 
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Figure 2.1. Model domains and topography of research area. (a.) HRRR and NAM-3km 

CONUS domains in red. COAMPS domain in blue. (b.) COAMPS domain with 

topography based on the color bar below. 

  

(a) (b) 
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Figure 2.2. Average precipitation (mm) within the analysis domain from Stage-IV 12-h 

analyses from 0000 UTC 1 December 2018 to 1200 UTC 28 February 2019. Periods in 

red (blue) indicate precipitation related to an AR (non-AR) event.  
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Figure 2.3. Station locations for NWS, RAWS, and HADS networks. 



60 

CHAPTER 3

 

RESULTS AND DISCUSSION 

 

To assess the utility of the Stage-IV precipitation analyses for model verification 

in the California region, the analyses are compared in Section 3.1 to NWS, RAWS, and 

HADS station precipitation during the DJF 2018-19 season. A detailed analysis of an AR 

event during 6-8 December 2019 is then used to illustrate observed and forecasted 

characteristics of AR events. The case study affords a more detailed investigation of the 

well-recognized relationships between IVT and rainfall during AR events and the extent 

to which HRRR and COAMPS forecast those quantities. Finally, HRRR, COAMPS, and 

NAM-3km precipitation forecasts during AR and non-AR events are validated using the 

Stage-IV precipitation analyses during the 2018-19 DJF season.  

 

3.1 Stage-IV Analysis Evaluation 

According to the California Department of Water Resources (2019), statewide 

precipitation amounts during the 2018-2019 water year (1 Oct 2018 – 30 Sep 2019) were 

better than many other recent years leading to the state’s snowpack on 1 Apr 2019 being 

175 percent of average and statewide reservoir storage ending 128 percent of average. 

However, before 1 February 2019, the precipitation across the state was below average. 

Three strong AR periods during February (Fig. 2.3) reversed that situation and 
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precipitation increased to 124% of average for the state by the end of the month. Figure 

3.1 shows the 12-h average for precipitation events during the DJF 2018-19 season 

omitting periods when no-little precipitation fell. Large amounts of precipitation (>5 mm 

per 12-h period) fell as in the coastal ranges, interior northern and Sierra Nevada 

mountains, and highest elevations of southern California. Some areas along the northern 

California and southern Oregon coast received amounts greater than 10 mm (0.394 in) 

per 12-h period according to the Stage-IV analyses (Fig. 3.1b). 

As mentioned in the previous chapter, 864 precipitation measuring stations were 

judged after automated and subjective quality control to provide reasonable 12-h 

precipitation totals during this period. However, that number of sites is still insufficient to 

evaluate in great detail the model precipitation grids at 3-4 km horizontal resolution 

across California. Hence, the NWS, RAWS, and HADS station values are used here to 

corroborate that the Stage-IV analyses are reasonable for model validation with the 

understanding that the analyses are created in part by relying on these station reports. Of 

greatest interest is to determine whether there are any substantial under- or over-estimates 

of precipitation amounts in the Stage-IV analyses that would bias the interpretation of the 

verification of the model forecasts. 

Figure 2.3 highlighted that precipitation in California is episodic with many 12-h 

periods during which little precipitation is observed across the state. The periods with 

largest statewide precipitation amounts are nearly all associated with AR events. Figure 

3.2 shows the average bias, RMSE, and bias ratio computed from all 12-h periods during 

the season between the Stage-IV analysis totals interpolated to the station locations and 

the corresponding station observations. As shown in Figure 3.2a, the Stage-IV analyses 
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generally are within 1mm on average of the observations at the lower elevation locations 

where the station totals for the season are small (Fig. 3.1). RMSE values in those 

locations tend to be below 3 mm while bias ratios are often relatively close to 1 (Fig. 

3.2b,c). There are fewer locations where the analyses tend to be substantially lower than 

the station values (Fig. 3.2a,c). However, there are more locations in the coastal ranges 

and higher elevations of the interior mountains where the Stage-IV analyses are greater 

than those observed with larger RMSEs than those at lower elevations. These results are 

not entirely unexpected as previous studies have shown that Stage-IV analyses tend to 

slightly overestimate observations in the California and Nevada RFC during DJF (Nelson 

et al. 2015). Concerns about the representativeness of station observations at high 

elevation and the many sources of uncertainty for both the observations and analyses in 

such regions are well recognized (Henn et al. 2017).  

Not surprisingly, differences between the analyses and station observations during 

specific 12-h periods (Fig. 3.3) are unlikely when the statewide precipitation totals are 

small (Fig. 2.3). Larger discrepancies occur when there are larger precipitation totals 

arising from AR- or non-AR events during February 2019 (Fig. 3.3). Discrepancies 

between analysis values at NWS sites tend to be smaller, likely due to their locations in 

areas receiving less total precipitation as well as more weight given to those observations 

in the Stage-IV analyses. However, during some 12-h periods within AR events, the bias 

and RMSE values of the analyses relative to NWS stations are not substantially different 

from those obtained at RAWS sites, many of which are also at lower elevation or in 

relatively close proximity to urban areas.  

The largest biases and RMSE scores are evident in Figure 3.3 between the 



21 

 

 

 

analyses and HADS observations during the major AR events. As shown in Figure 2.1, 

HADS stations are located throughout the domain for water management and flood 

control, some along rivers and streams at lower elevation as well as many at strategic 

locations at higher elevation. Considerable time was spent evaluating individual HADS 

stations relative to other neighboring stations and the Stage-IV analyses. In total, 250 

HADS stations were eliminated through manual quality control steps (e.g., identifying 

very low precipitation totals when temperatures were below freezing and other nearby 

stations reported large snow totals). Even after these quality control steps were applied, 

there are several 12-h periods during AR events where the discrepancies between HADS 

observations and the Stage-IV analyses remain large. However, it will be shown later that 

the model forecasts tend to be overestimates relative to the Stage-IV analyses over high 

terrain. Hence, the errors exhibited by the model forecasts are even greater when 

compared against the HADS observations directly (not shown).   

Based on the results of this subsection and additional evaluation of the Stage-IV 

analysis products relative to the available observations, the Stage-IV analyses are judged 

to be very useful for evaluating the model precipitation forecasts during AR and non-AR 

events in California. Hence, the Stage-IV analyses will be used for validation of model 

forecasts of precipitation in the remaining two sections. 

 

3.2 6-8 December 2019 Case Study 

A large midlatitude cyclone traversing the eastern Pacific Ocean led to AR 

conditions from 6-8 December 2019 across most of California. A large plume of moisture 

associated with the cyclone stretched from Hawaii to California (not shown), bringing 
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more than 100 mm (3.64 in) of precipitation to coastal and interior mountain ranges in 

northern California (Fig. 3.4). Localized areas in the northern Coast Range received more 

than 150 mm (5.9 in) of accumulated precipitation during the 72-h period between 1200 

UTC 5 December and 1200 UTC 08 December 2019 (Fig. 3.4f). Another notable feature 

is the large precipitation amounts to the north of the Central Valley, which will be 

referred to as the Mt. Shasta area. The coastal ranges south of San Francisco also saw 

substantial accumulations of precipitation with lesser amounts in southern California. 

Areas in the Sierra Nevada mountains above 2500 m received between 30-60 cm (1-2 ft) 

of snow. Two Flood Advisories were issued by the Sacramento NWSWFO for Shasta and 

El Dorado counties during the afternoon of 07 December 2019 when the heaviest 

precipitation rates were observed (Castellano et al. 2019). This storm resulted in localized 

flooding throughout Northern California including flooded houses in a San Francisco 

neighborhood and rockslides along coastal highways south of San Francisco. 

 The 449 MHz wind profiler (BBY) maintained by the ESRL Physical Sciences 

Division is located near Bodega Bay, CA (red star in Fig. 3.4a). Accumulated 

precipitation amounts in the coastal range immediately to the north of BBY were the 

largest observed in the state during this event. Figure 3.5 summarizes the vertical 

structure of wind speed and direction based on hourly observations at BBY and hourly 

analyses at HRRR and COAMPS analyses available only every 12-h interpolated to that 

location. The median and interquartile range (25th to 75th percentile) wind speed and 

direction at each level were computed for the 72-h period from 1200 UTC 5 Dec to 1200 

UTC 8 Dec 2019 for BBY and HRRR. COAMPS 25th and 75th percentiles were not 

calculated because only six analyses are included during this timeframe. On the basis of 
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the BBY profiler data, a low-level southerly jet in the 500 m to 1 km MSL layer was 

common during this event with wind speeds typically greater than 15 m s-1. The sustained 

southerly fetch throughout the lowest 5 km during this 72-h period is remarkable and 

provides an indication of substantive flow impinging on the orography of the coastal 

ranges further north. HRRR F00 analyses are quite similar to the BBY winds, which 

suggests that those wind observations were being assimilated into the model data 

assimilation cycle. Some differences between the observed and analyzed winds are: 

HRRR analyzed winds tend to be weaker in the lowest 300 m than observed and HRRR 

wind directions tend to be more southerly than south-southeasterly throughout the lowest 

5 km. COAMPS analyzed winds are even weaker than the HRRR in the lowest 300 m, 

and the wind directions tend to be more southeasterly than south-southeasterly. 

 As would be expected during an AR event (Backes et al. 2015; Ralph et al. 2017), 

the magnitudes of HRRR analyzed vertical moisture flux profiles each hour during this 

72-h period tend to peak in the layer corresponding to the low level jet (Fig. 3.6). Hence, 

it should be evident that the contributions to the density-weighted IVT of this northerly-

directed flow are dominated during this event by the moisture flux below 1.5 km. IVT 

calculated for this location from HRRR analyses was on average in excess of 317 kg m-1 

s-1 over this 72-h period. COAMPS vertical moisture fluxes are much weaker at lower 

levels compared to HRRR fluxes.  

Figure 3.7 shows HRRR IVT analyses every 12 h from 0000 UTC 06 December 

through 1200 UTC 08 December 2019. In the context of these 12-h snapshots, IVT 

peaked at 0000 UTC 7 December 2019 with values impinging on the California coast to 

the north of San Francisco in excess of 650 kg m-1 s-1. Based on the real-time analyses of 
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AR events maintained by the Center for Western Weather and Water Extremes, this event 

was classified as a AR3 level event since AR conditions lasted for longer than 48 h with a 

maximum IVT value along the CA coast greater than 500 𝑘𝑔 𝑚−1 𝑠−1 (Ralph et al. 

2019). Large IVT values continued for another day after 0000 UTC 7 December in 

northern California with extensive precipitation continuing in that region through 1200 

UTC 8 December (compare Fig. 3.4e and 3.4f). For that reason, this case is an example 

of our approach to extend by up to 12-h the lifetime of an AR event if extensive 

precipitation continues in the region where IVT exceeded 250 𝑘𝑔 𝑚−1 𝑠−1 during the 

previous 12-h period.  

As a summary of the IVT throughout the 72 h event, Figure 3.8a shows the 

average IVT based on the hourly HRRR IVT analyses. The largest IVT remained 

offshore and northwest of where the precipitation was greatest, which suggests that this 

event would have had even greater impact on northern California if the moisture plume 

had shifted a bit further south and east. High values of IVT also were analyzed to have 

penetrated inland into the northern part of the Central Valley, which is consistent with the 

large precipitation amounts in the Mt. Shasta area. Figure 3.8b shows the same for the 12-

h COAMPS IVT analyses. Comparing to HRRR analyses, COAMPS IVT analysis is 

significantly weaker. However, elevated IVT values were present as well in the northern 

part of the Central Valley. COAMPS also had slighter more IVT >250 𝑘𝑔 𝑚−1 𝑠−1 off 

the southern coast of California.  

Since the largest IVT values along the coast occurred on 0000 UTC 07 December 

2019 (Figs. 3.7c and 3.9c), the ability of HRRR and COAMPS to forecast these 

conditions 24 h and 12 h in advance are shown in Figure 3.9. The overall orientation and 
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strength of IVT from both forecasts from the HRRR tend to be quite good. All panels 

show the dominant moisture plume paralleling the northern California coast with a 

weaker IVT plume impinging upon southern California.  However, subtracting the 

forecasts from the analysis (Fig. 3.9c) highlights some important differences (Fig. 3.10). 

HRRR F24 has a more concentrated area of IVT making landfall north of San Francisco, 

with much weaker IVT values indicated by darker blue shading along the northern 

California coast. The F24 forecast also has much higher values of IVT penetrating inland 

into the Central Valley compared to HRRR analysis (Fig. 3.10a.). The F12 forecast 

improves upon the F24 forecast slightly by shifting the area of maximum IVT north, 

however the IVT forecast is still too weak along the northern coast. The F12 also extends 

stronger IVT values south and west over the Pacific Ocean. In addition, IVT values are 

still forecasted much higher inland than compared to the F00 analysis (Fig. 3.10b). 

The primary IVT plume analyzed by COAMPS at 0000 UTC 7 December 2019 

has a similar orientation but is much weaker than that analyzed by HRRR (compare Fig. 

3.9c and 3.9f). COAMPS does not analyze values of IVT greater than 250 𝑘𝑔 𝑚−1 𝑠−1 

making landfall across the southern California coast. Relative to the COAMPS analysis 

valid at that time, the COAMPS F24 forecast tended to have the IVT plume too far west 

while the COAMPS F12 forecast had much stronger IVT across northern California and 

southern Oregon and immediately offshore central California (Fig. 3.10c and 3.10d). 

 The analyses and forecasts of IVT from the HRRR and COAMPS provide a 

framework for evaluating the precipitation forecasts from those models (Figs. 3.11 and 

3.12). Both models captured the general precipitation features associated with this AR 

event with well-defined maxima along the northern Coast Range, Mt. Shasta area, and 
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Sierras that correspond to the impact of the IVT plume along the northern coast and the 

IVT penetrating inland. Lesser precipitation amounts are forecasted to develop during the 

latter stages of the event in southern California. However, HRRR forecasts tended to 

under forecast the orographic precipitation in the coastal ranges and Mt. Shasta area as 

the AR event evolved (e.g., compare Figs. 3.4d and 3.11d) while COAMPS tended to 

overpredict precipitation amounts in those areas as well as the Sierra Nevada (e.g., 

compare Figs. 3.4d and 3.12d). 

The differences in precipitation forecasted in the first 12 h from HRRR and 

COAMPS relative to the Stage-IV analyses are shown for the entire 72-h AR event in 

Figure 3.13. HRRR underpredicted the cumulative precipitation amounts along the 

northern coast where the largest totals were observed and also in the Mt. Shasta area (Fig. 

3.13a). However, COAMPS exhibited a large wet bias in the interior sections of the 

coastal ranges, Mt. Shasta area, northern Sierras, and swaths within the northern Central 

Valley (Fig. 3.13b). Both models consistently underpredicted precipitation amounts 

immediately north of Bodega Bay and along the narrow coastal strip to the south of San 

Francisco.  Hence, COAMPS overpredicted precipitation amounts in many areas even 

though the IVT predicted to impinge on the orography of northern California was weaker 

than that forecast by the HRRR.  

In an attempt to help explain the dry bias to the north of Bodega Bay, the 12-h 

forecasted wind speed and direction and moisture flux at the BBY site are evaluated.  

HRRR F12 forecasts from 72 initializations are available from 0000 UTC 06 December 

2019 to 1200 UTC 08 December 2019. Summary statistics in terms of the median and 

interquartile range for these F12 forecasts interpolated to the BBY site are shown in 
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Figure 3.14 along with the summary statistics from the BBY wind profiler and HRRR 

analyses previously shown in Figure 3.5. Above 2.5 km, the median wind speed values as 

a function of level and variability of those wind speeds from the F12 forecasts are quite 

similar to those observed and analyzed. However, the F12 wind speeds in the 1-2 km 

AGL range tended to be weaker, which leads to a more pronounced low-level jet feature 

at 500-800 m AGL occurring more frequently than observed during this event. The F12 

wind directions below 2 km AGL (Fig. 11b) tend to be even less south-southeasterly than 

those observed and HRRR analyses. The median COAMPS wind speed and direction are 

also computed from the 6-member sample of F12 forecasts available during the 72-h 

event for the BBY location. COAMPS wind speeds tended to be higher than those 

observed above 1.5 km AGL and weaker below with less indication of a low-level jet 

feature (Fig. 3.14). COAMPS F12 wind directions tend to be more south-southeasterly 

below 1.5 km than observed as well.  

Similar to Figure 3.6, the F12 moisture flux is calculated for HRRR and 

COAMPS at the BBY location (Fig. 3.15). HRRR F12 median moisture flux is nearly the 

same as to what was analyzed by the model (Fig. 3.6). Peak moisture flux is observed in 

the 500-800 m AGL region, similar to where the low-level jet is found in Figure 3.14. 

COAMPS F12 median moisture flux is stronger than what was observed (Fig 3.6), 

however is still considerably weaker than the HRRR.  

This case study highlights that short-range HRRR and COAMPS forecasts 

captured well the key features of the AR event. However, differences between forecasts 

of IVT and those analyzed by HRRR do not align with a simplistic expectation that 

reduced forecasted IVT would correspond to reduced orographically-induced 
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precipitation. For example, COAMPS IVT forecasts were weaker than those analyzed by 

HRRR yet yielded excessive amounts of precipitation compared to the Stage-IV analyses. 

In addition, the underprediction of precipitation by both modeling systems to the north of 

Bodega Bay where the observed precipitation was largest has no clear-cut linkage to 

differences between the local forecasted wind field and those observed from the nearby 

wind profiler. Many of these differences will be shown in the next section to be common 

in many other AR events throughout a winter season. 

 

3.3 2018-2019 Season Cumulative Statistics 

 The HRRR archive at the University of Utah discussed in Chapter 2 focuses on 

storing analyses of two-dimensional and three-dimensional fields, which are of greatest 

interest for most studies. When conditions warrant, e.g., for the 6-8 December 2019 AR 

event, the three-dimensional forecast fields are saved. Special efforts were required to 

obtain the COAMPS three-dimensional forecast fields for the case study as well.  Hence, 

it is not possible to evaluate the skill of IVT and moisture flux over the 2018-2019 season 

as part of this study. The focus in this subsection is to validate the initial 12-h 

accumulated precipitation forecasted by HRRR, COAMPS, and NAM-3km for the 

periods from 0000-1200 UTC and 1200-0000 UTC initialized at those starting hours 

during the 90 days of the 2018-2019 winter season. 
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3.3.1 Bias 

The seasonal averages of 12-h precipitation totals from the Stage-IV analyses and 

from the 12-h forecasts from the three models are shown in Figure 3.16. The highest 12-h 

average precipitation is analyzed to be in the coastal mountains of northern California 

and southern Oregon (Fig. 3.16a). HRRR and COAMPS 12-h forecasts (Fig. 3.16b,c) 

subjectively compare well with the Stage-IV analyses, with differences noticeable in the 

northern Sierras and along the northern coast of California. The NAM-3km average 

forecasted precipitation (Fig 3.16d) differs from that analyzed or forecasted by the other 

models with accumulations much higher throughout most of the domain. All three 

models also tend to forecast more precipitation in Nevada and eastern Oregon compared 

to the Stage-IV analyses. 

The seasonal bias ratio for each model is shown in Figure 3.17 and calculated by 

dividing the total of the 12-h precipitation forecasts (Fig. 3.16b-d) divided by the 

analyzed seasonal total precipitation (Fig. 3.16a). The bias ratio is most relevant over and 

to the west of the Sierra Nevada where areas receive ample amount of seasonal rainfall. 

The large wet and dry biases in the lee of the Sierras, Nevada, and eastern Oregon result 

primarily from relatively small discrepancies of the model forecasts from the small 

seasonal precipitation totals in those regions.  

Of the three models, the HRRR exhibits the smallest bias ratios in most areas. 

HRRR has a dry bias along the coast stretching from the Monterey Bay area north into 

southern Oregon, which corresponds to the region with the highest precipitation amounts 

analyzed (Fig. 3.16a). The HRRR also has a dry bias ratio in the northernmost sections of 

the Sacramento Valley and a wet bias ratio in the southern Sierra Nevada mountains and 
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isolated mountain peaks in northern California. These are generally high elevation areas 

likely influenced by substantive orographic enhancement. COAMPS has a large positive 

bias ratio, especially in the Central Valley that did not receive much precipitation during 

this season. The wet bias extends into the central and southern Sierra Nevada mountains. 

COAMPS also exhibits a dry bias along the northern coast of California similar to the 

HRRR; however, it is not as extensive. There is also a strong dry bias along the Traverse 

Ranges in southern California. The NAM-3km exhibits a substantial wet bias across 

much of the domain compared to both the HRRR and COAMPS.  

The bias and RMSE averaged over the entire domain during each 12-h period 

during the 2018-19 season are calculated for each model relative to Stage-IV analyses 

(Fig. 3.18). During December, all models had small bias and RMSE values since 

precipitation amounts across the region tended to be low (Fig. 2.3). The biases and 

RMSE remained low until mid-January after which several large AR events occurred. 

COAMPS and NAM-3km tended to have large positive biases (overprediction) and larger 

RMSEs compared to the HRRR during AR episodes. The HRRR had episodes 

particularly during January AR events when the average bias was negative, indicative of 

underprediction of precipitation compared to the Stage-IV analyses.  

 

3.3.2 Skill scores during AR versus non-AR episodes 

 Although a majority of the total precipitation during the study period occurred 

during AR events, there were roughly similar numbers of AR and non-AR episodes (49 

AR events versus 33 non-AR events, respectively).  A variety of deterministic skill scores 

that rely upon 2 x 2 contingency tables can then be applied to similar samples from all of 
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the models for AR versus non-AR episodes.  The HRRR shows the best overall skill 

during AR and non-AR events independent of metric and precipitation range (Figs. 3.19 

and 3.20). For example, the HRRR has the highest ETS values, frequency bias values 

closest to one, and lowest false alarm ratios relative to the other two models for both sets 

of events. The slightly-above-one HRRR frequency bias scores indicate a tendency for 

overprediction that likely results from the large areal coverage of the unrealistic values 

over Nevada and southeastern Oregon (Fig. 3.17a). The COAMPS and the NAM-3km 

forecasts tend to have similar skill scores for precipitation amounts up to 10 mm (0.4 in). 

What differences exist between the sets of skill scores for AR relative to non-AR events 

from those two models are not substantively different from one another.   

Skill scores from all three models are slightly worse for non-AR events compared 

to those for AR events (compare Figs. 3.19 and 3. 20). The improved forecast skill during 

ARs episodes may result from better initialization and forecasts from the respective 

model’s parent model as well as the models’ handling of the larger-spatial scale of the 

precipitation coverage during that time of each storm’s evolution compared to non-AR 

events that may be influence more by smaller-scale convective precipitation.  

Figure 3.21 highlights the ability of the models to predict during AR events where 

precipitation is occurring for precipitation amounts above selected thresholds. For each 

precipitation threshold, FSS is calculated over the entire domain using a radial distance 

from 3 km (28 km² area) to 70 km (15394 km²), which can be viewed as spanning over 

the range from local and meso- to synoptic scales.  FSS values for the lowest threshold 

(0.254 mm) correspond to evaluating the coverage of measurable precipitation, i.e., the 

extent to which forecasted areas of measurable precipitation overlap with those analyzed. 
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While the magnitudes of FSS values in excess of 0.6 could be considered “useful” here 

(Roberts and Lean 2008; Blaylock and Horel 2020), the relative ability of the models to 

have high FSS values on the mesoscale (radial distances up to 20-30 km) is of greatest 

interest for this study.  

All three models are able to identify during AR events areas where measurable or 

greater precipitation has been analyzed on the mesoscale with FSS values in excess of 

0.8. For thresholds up to 25 mm (~1 in), HRRR and NAM-3km models have better 

correspondence between areal coverage of precipitation in excess of those thresholds than 

that from COAMPS. None of the models would be particularly useful at forecasting the 

specific locations of heavy precipitation in the Stage-IV analyses during the 12-h periods 

of AR episodes (areas with amounts in excess of 50 mm within 20 km radial distances). 

There were ~21,000 grid points that measured precipitation greater than 50 mm during 

the DJF period, which is only about 1% of the measured 12 h Stage-IV precipitation. 

Relative to the other two models, the HRRR has higher FSS values for the smaller sample 

(~2000) grid points where the analyzed 12-h precipitation totals exceeds 75 mm (~3 in).  

The FSS scores for specific thresholds during non-AR episodes (Fig. 3.22) are 

lower than those during AR episodes (Fig. 3.21). Since large 12-h Stage-IV precipitation 

amounts are less common during non-AR episodes, FSS values for amounts in excess of 

75 mm are not shown. The overall lower scores are not unexpected given the tendency 

for reduced coverage and less organized precipitation during the non-AR episodes. 

Overall, HRRR continues to have the highest overall FSS scores followed by NAM-3km 

and then COAMPS. HRRR exhibits useful skill for identifying areas on scales at or 

below 30 km when evaluating precipitation amounts at or above 10 mm. All three models 
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show poor skill for the limited areas analyzed to have precipitation amounts in excess of 

50 mm (~ 2 in). 

 As with the ETS metric, the FSS counts a successful forecast as one where 

precipitation values forecasted and analyzed simply exceed a threshold. Hence, when a 

small threshold is used for FSS, a skillful forecast may have large discrepancies between 

what is forecasted and analyzed within the region. To address this issue, FSS is calculated 

limiting a skill forecast to be one in which both the forecast and analysis fields have areas 

in common within relatively broad precipitation ranges. Ranges include values 

corresponding to no measurable precipitation within the 12-h period (0 – 0.254 mm) and  

light (0.254 mm – 5 mm or 0.254 – 10 mm), moderate (5 – 25 mm or 10 – 50 mm) and 

heavy ( 25 – 75 mm or greater than 50 mm) precipitation.  

 Figure 3.23 shows the FSS within the specified ranges during AR periods. All 

models do better at forecasting moderate 12-h precipitation amounts (within 5 – 25 mm 

or 10 – 50 mm) with the HRRR having the highest FSS values.  All models have less 

accuracy explicitly forecasting where no precipitation is analyzed or light amounts less 

than 10 mm or, as already evident in Figure 3.21, where precipitation was analyzed to be 

greater than 50 mm.  

 For non-AR periods (Fig. 3.24), HRRR still remains more skillful compared to 

the other models, but as seen before, scores are lower for non-AR compared to AR 

periods. All three models handle light to low-moderate ranges best (0.25 - 5 mm and 5 - 

25 mm) and are less successful for the no-precipitation category or precipitation amounts 

greater than 25 m (the latter already evident in Fig. 3.22).  
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Figure. 3.1 Mean 12-h precipitation totals (mm) measured at (a) stations and for (b) 

Stage-IV analyses during DJF 2018-19 shaded according to the color bar.  

  

(a) (b) 
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Figure 3.2. Total 12-h precipitation accumulations between Stage-IV analysis values and 

station observations for (a.) bias (mm), (b.) RMSE, and (c.) bias ratio. Each figure is 

shaded according to the scale at the bottom during DJF 2018-19. Mean and standard 

deviation of the bias (in mm) shown in the bottom left corner.  

  

(a) (b) 



36 

 

 

 

 

Figure 3.2 continued.  

  

(c) 
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Figure 3.3. Average for each 12-h period of the (a.) bias and (b.) RMSE of Stage-IV 

analysis totals relative to NWS (blue), RAWS (orange), and HADS (green) station totals 

during DJF 2018-19.  

  

(a) 

(b) 
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(a) (b) (c) 

(d) (e) (f) 

 

Figure 3.4. Stage-IV analyses of 12-h accumulated precipitation (mm) beginning with the 

1200 UTC 05 Dec 2019 to 0000 UTC 06 Dec 2019 period and continuing until the 0000 

UTC 08 Dec 2019 to 1200 UTC 08 Dec 2019 period shaded according to the color bar. 

Bodega Bay (BBY) wind profiler location indicated by the red star in the first panel. 
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Figure 3.5. Hourly BBY wind profiles, HRRR hourly analyses, and COAMPS 12-hourly 

analyses near that site (black, red, and blue lines, respectively) for (a.) median wind speed 

(m s-1)  and (b.) wind direction during the 1200 UTC 05 Dec 2019 to 1200 UTC 08 Dec 

2019 period. Wind speeds from the profiler and HRRR F00 analyses within the 25th to 

75th percentiles are denoted by the black and red shading, respectively. 

  

(a) (b) 
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Figure. 3.6. As in Figure 3.5 except for the magnitude of the moisture flux (g kg-1 m s-1) 

near BBY from HRRR F00 and COAMPS F00 analyses.  
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Figure 3.7. Vertically integrated water vapor transport (IVT,  kg m-1 s-1) from HRRR F00 

analyses valid every 12 h from 0000 UTC 06 Dec 2019 to 1200 UTC 08 Dec 2019 

shaded according to the color bar. Vectors provide a relative indication of the direction 

and magnitude of IVT. 
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Figure 3.8. Composite IVT (kg m-1 s-1) analyses from 1200 UTC 05 Dec 2019 to 1200 

UTC 08 Dec 2019 for (a.) HRRR F00 and (b.) COAMPS F00 shaded according to the 

scale on the right.  

  

(a) 

(b) 
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Figure 3.9. IVT (kg m-1 s-1) valid 0000 UTC 07 Dec 2019 from (top row) HRRR: (a.) 

F24, (b.) F12, (c.) F00 and (bottom row.) COAMPS: (d.) F24, (e.) F12, (f.) F00. 
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Figure 3.10. IVT difference (kg m-1 s-1) between (a.) HRRR F24 and F00 fields valid 

0000 UTC 07 Dec 2019.  b.) As in (a) except for the difference between HRRR F12 and 

F00 fields.  c.) As in (a) except for the difference between COAMPS F24 and F00 fields. 

d.) As in (c) except for the difference between COAMPS F12 and F00 fields.  

  

(a) (b) 

(c) (d) 
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Figure 3.11. Twelve-hour accumulated precipitation (mm) beginning with HRRR 

forecast initialized at 1200 UTC 05 Dec 2019 for the 1200 UTC 05 Dec 2019 to 0000 

UTC 06 Dec 2019 period and continuing until HRRR forecast initialized at 0000 UTC 08 

Dec 2019 for the 0000 UTC 08 Dec 2019 to 1200 UTC 08 Dec 2019 period. Shading 

according to the color bar.  

  

(a) (b) (c) 

(d) (e) (f) 
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(a) (b) (c) 

(d) (e) (f) 

Figure 3.12. As in Figure 3.11 except for 12-h accumulated precipitation (mm) from 

COAMPS forecasts initialized from 1200 UTC 05 Dec 2019 to 0000 UTC 08 December 

2019. 
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Figure 3.13. Difference in precipitation (mm) accumulated from F01-F12 for (a.) HRRR 

forecasts initialized from 1200 UTC 05 Dec2019 to 0000 UTC 08 Dec 2019 and Stage-

IV analyses for the same 72-h period. b.) As in (a) except the differences are computed 

from F03-F12 COAMPS forecasts for the same 72-h period relative to the Stage-IV 

analyses.  

 

 

  

COAMPS

S 

HRRR 

(a) (b) 
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Figure 3.14. As in Figure 3.5 except the red lines and shading are from hourly HRRR F12 

forecasts. The median of the COAMPS F12 forecasts is denoted by the blue line. 

  

(a) (b) 
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Figure 3.15. As in Figure 3.6 except the red lines and shading are from hourly HRRR F12 

forecasts. The median of the COAMPS F12 forecasts is denoted by the blue line. 

  



50 

 

 

 

 

Figure 3.16. Mean 12-h precipitation totals for a.) Stage-IV, b.) HRRR, c.) COAMPS, 

and d.) NAM-3km during DJF 2018-19 shaded according to the color bar. 
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Figure 3.17. Bias ratio for 12-h precipitation totals for the (a) HRRR, (b) COAMPS, and 

(c) NAM-3km relative to the Stage-IV analysis totals during DJF 2018-19 shaded 

according to the color bar.  
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Figure 3.18. Time series of (top) mean bias scores for HRRR (blue), COAMPS (orange), 

and the NAM-3km (green) models during DJF 2018-19. (Bottom) Same as top row as for 

RMSE. 
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Figure 3.19. Model skill scores for 12-h model precipitation totals relative to Stage-IV 

analyses during AR events for (a.) equitable threat score, (b.) frequency bias, (c.) hit rate, 

and (d.) false alarm ratio. The x-axis indicates the starting threshold value used to 

calculate the skill score. Blue, green, and orange lines indicate HRRR, COAMPS, and 

NAM-3km, respectively.  

  

(a) (b) 

(c) (d) 
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Figure 3.20. As in Figure 3.19 except for non-AR events.  

 

  

(a) (b) 

(c) (d) 
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Figure 3.21. FSS computed during AR events for (a.) the HRRR, (b.) COAMPS, and (c.) 

the NAM-3km model. The x-axis indicates the radial distance (km). Thresholds of 12-h 

precipitation totals used to calculate FSS are indicated in the legend.  

  

(c) HRRR (a) COAMPS (b) NAM-3km 



56 

 

 

 

Figure 3.22. As in Figure 3.21 except for non-AR events. 

  

(a) HRRR (b) COAMPS (c)  NAM-3km 
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Figure 3.23. FSS computed during AR events for (a.) the HRRR, (b.) COAMPS, and (c.) 

the NAM-3km model using threshold ranges. The x-axis indicates the radial distance 

(km). Thresholds of 12-h precipitation totals used to calculate FSS are indicated in the 

legend.  

  

(a) HRRR (b) COAMPS (c)  NAM-3km 
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Figure 3.24. As in Figure 3.23 except for non-AR events. 

 

(a) HRRR (b) COAMPS (c) NAM-3km 
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CHAPTER 4 

 

 

CONCLUSION 

 

4.1 Summary 

The Stage-IV gridded analyses were compared to the NWS, RAWS, and HADS 

station networks to determine whether the Stage-IV product was viable to use when 

evaluating model precipitation. There were some biases between the two at higher 

elevations; however, there are many uncertainties related to station measurements at high 

elevations. Overall, it was found that the Stage-IV analyses were appropriate to use for 

model validation, even if their fidelity in specific regions may be affected by radar beam 

blockage, lack of observations in many areas, etc. 

HRRR and COAMPS were evaluated using the Stage-IV analyses during an AR 

case study that took place during 6-8 December 2019. Relative to their verifying 

analyses, HRRR and COAMPS were able to forecast the general location of IVT 

associated with the primary moisture plume quite well at forecast lead times of 12 and 24 

h. HRRR however overpredicted IVT values inland, an error that tended to be reduced as 

forecast lead time decreased. COAMPS predicted much lower values of IVT compared to 

HRRR and did not develop the secondary IVT plume approaching southern California.   

 HRRR precipitation forecasts during this episode tended to be quite good; 



60 

 

 

 

however, those forecasts overpredicted precipitation in mountainous areas, especially in 

the Mount Shasta area. There was also a dry bias along the northern California coast. 

COAMPS overpredicted precipitation in mountainous areas as well as produced 

precipitation bands not analyzed in the Sacramento Valley. COAMPS overall predicted 

more precipitation than HRRR and yet had forecasted lower than analyzed IVT values.  

To examine the dry bias along the northern California coast in both models, wind 

speed, direction, and moisture flux from the models were compared to the BBY wind 

profiler in this region. Both models predicted the median wind speeds as a function of 

vertical level at 12-h lead times reasonably well, although they both predicted slightly 

weaker speeds of the low-level jet. The forecasted median wind directions from the 

models differed from those observed with HRRR forecasts exhibiting more southwesterly 

winds (slightly greater onshore flow) while the smaller sample of COAMPS forecasts 

tended to have more southeasterly winds (slightly more offshore flow). HRRR 12-h 

forecasts of low-level moisture flux at this location were similar to its analyses. 

COAMPS had much weaker moisture flux values, consistent with its overall weaker IVT 

forecasts.  

Precipitation forecasts were separated into 49 AR and 33 non-AR related 12-h 

periods for the cumulative precipitation statistics for the 2018-2019 season. Overall, all 

models performed better during AR events when the precipitation tends to be larger and 

more widespread compared to the weaker, more convective precipitation during the non-

AR episodes. In addition, it is possible that ARs embedded within large-scale synoptic 

events are better initialized than the less-organized conditions associated with non-AR 

periods. Although the models tend to perform better during AR events, higher average 
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bias scores occurred during the three largest ARs during February 2019, which likely 

resulted from overpredictions over the interior mountainous areas. The intricacies in this 

model behavior could also be due to scale of the terrain in the domain. The Sierra 

Nevada’s are much larger and steeper than the coastal mountains, which could have 

played a role in the dry biases found along the coastal mountains and wet bias in the 

interior mountains. 

The accuracy of HRRR 12-h precipitation forecasts was higher than that relative 

to both the COAMPS and the NAM-3km model during both AR and non-AR events 

HRRR had smaller overall bias ratios, higher ETS scores, lower false alarm rates, and 

higher FSS. NAM 3-km had a stronger wet bias and a higher orographic precipitation 

enhancement than COAMPS. Based on FSS computed within precipitation ranges,  all 

models tended to predict moderate amounts of precipitation (10-50 mm) better than 

smaller and larger amounts of precipitation. 

 

4.2 Future Research 

This study was not able to isolate the causes for the higher accuracy of 12-h 

precipitation forecasts from HRRR compared to the other two models. While 

precipitation forecasts during the first 12 h are of interest, understanding model skill at 

longer lead times than examined here has higher value. Although  this study investigated 

hundreds of precipitation forecasts that are part of a 120 tera byte archive at the 

University of Utah, the order of magnitude more storage required to archive all of the 

model’s two- and three-dimensional fields out to 36 h has not been available. A goal 

following from this work will be to shift the HRRR archive from the cloud storage 
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supported by the Center for High Performance Computing to that provided by Amazon 

Web Services (AWS). Then, it will be possible to process in the AWS cloud the grids and 

archive them in more practical formats for research by us and many others. Similar 

practical limitations impeded our analysis of three-dimensional forecast fields from 

COAMPS.  

The importance of improving high-resolution models during AR events is vital for 

weather forecasters, hydrologists, and emergency managers to enhance public safety in 

California. ARs provide rich opportunities to understand storm-scale structure of storms 

making landfall, formation of low-level jets along the coast and within interior valleys, 

and terrain-flow interactions. Of particular interest will be to transition from examining 

the present deterministic framework of the operational HRRR and COAMPS to their 

future ensemble forecast systems in order to better understand the predictability of these 

storms. Further specific research that could be conducted include examining more AR 

events in terms of moisture flux and IVT as well as diagnosing how the model’s handle 

how the structure of low-level jets evolve over the lifetime of the AR episodes. This 

research focused on the relative overall performance of the models without detailed 

examination using metrics to calculate statistical significance. Some further 

improvements of the statistical approaches taken to verify precipitation could be to 

include a bootstrapping technique to establish statistical significance. Also, the addition 

of the FSS metric for catchment areas can be determined to further understand how well 

the models perform in areas of complex terrain.
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