Whole-cell recordings from the anuran inferior colliculus. The data is averaged & representative whole-cell recordings, stats and code used for the analysis.
Data were collected from the free online available International Ionosphere Reference (IRI) database ( https://kauai.ccmc.gsfc.nasa.gov/instantrun/iri) for January 1, 2020. The data were then interpolated from 1km to our desired resolution of 0.1km. This is is profile used to simulate the 3D FDTD models to observe the propagation of power line harmonic radiation through the ionosphere.
This repository includes all seismograms we used for the 58 earthquakes occurring in the New Guinea area and recorded in North America that our analyzed in our paper: Investigating ultra-low velocity zones as sources of PKP scattering beneath North America and the Western Pacific Ocean: Potential links to subducted oceanic crust. AGU Advances, in review.
This dataset includes seismic waveforms for an event used in the study "Effects of 2.5-D ultra-low and ultra-high velocity zones on flip-reverse-stacking (FRS) of the ScS wavefield". In addition, because ultra-high velocity zone (UHVZ) synthetic computations can be challenging when using ray based methods, we include our full waveform solutions for 1-D and 2.5-D UHVZ models as discussed in our manuscript. These can be used to benchmark other methods.
This dataset includes electrical resistivity tomography (ERT) measurements collected around the Great Salt Lake (GSL). This was supported through an NSF Rapid proposal. These preliminary measurements form a baseline by which to do ERT measurements to detect ground-water changes around GSL.
The spectral data required to reproduce the results from the paper "Intraoperative characterization of cardiac tissue: the potential of light scattering spectroscopy," published in the Journal of Biomedical Optics.
We conducted a qualitative study using a phenomenological approach in India’s Spiti Valley between August and October 2023. Sixteen individuals, age 18 years and older, participated in one-on-one interviews. The interviews were transcribed from Hindi into English, reviewed for accuracy by a native speaker, and imported into Dedoose software. Data were analyzed using inductive coding. These are the raw data sheets associated with this study. Ethics approval was provided by the University of Utah’s Institutional Review Board (IRB:00167060).
This collection includes radial component displacement seismograms in the time window including the SKS, SKKS and SPdKS seismic arrivals. These data all interact with ultra-low velocity zone (ULVZ) structures at the core-mantle boundary beneath East Asia. Data used in the study of Festin et al., 2024 (TSR) is included in this collection.
The data from the Digital Library Outreach and Instruction survey is intended to discover how digital library practitioners at various types of cultural institutions promote their unique resources, beyond simply placing content in an online repository for users to discover. Types of outreach investigated include social media promotion, integration of digital collections into teaching and instruction activities, and partnerships with external campus units or community organizations.
The microbiology data represents the microorganisms recovered during the study period at the University of Utah hospital from samples collected from patients, environmental surfaces, and healthcare personnel (HCP) hands using premoistened sponges. Patient samples were collected daily from the axilla, groin, and perianal areas or stool. Environmental samples were collected daily from room surfaces and unit common areas (such as bed rails, overbed tables, door handles, computer keyboards, and other high-touch areas). HCP hands were periodically sampled upon HCP exit from a patient room after engaging in health care activities. Samples were collected from the 20-bed University of Utah Hospital Cardiovascular ICU (CVICU) over a 54 day period. The information from these datasets can be used to understand how different organisms appear and move throughout a hospital ward over a period of time.
This dataset contains room occupancy during the study period at University of Utah hospital. Admission, Discharge, and Transfer (ADT) data is captured in participating hospitals to characterize room occupancy and non-occupancy in wards. These data are pulled from multiple sources collected during the study by study staff as well as harvested EHR data. Data were adjudicated and compiled into one comprehensive file. Data manipulation included redaction of dates, replaced with study days 1-n, as well as transformation from long format to wide for ease of use.
The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard. This dataset contains cleaned sensor pings of RFD reads between healthcare worker worn sensors and environmental sensors placed in facility using methods described in the "Data Cleaning Steps" section.
A comprehensive geochemical and stratigraphic study of Cretaceous coal-bearing strata in Utah and western Colorado was performed to evaluate geologic trends in REE-enrichment, as well as elucidate enrichment mechanisms. Preliminary portable X-ray fluorescence (pXRF) analyses (n = 5659) was combined with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) analyses (n = 135) on particularly REE-enriched samples. Sampling and analyses from active and historic mines as well as nearby cores and outcrops were performed with an emphasis on sedimentary, stratigraphic, geographic, and mining context.
This study aims to quantify rare earth element enrichment within coal and coal-adjacent strata in the Uinta Region of Utah and western Colorado. Rare earth elements are a subset of critical minerals used for renewable energy technology in the transition toward carbon-neutral energy. This data contains samples from seven active mines and seven stratigraphically complete cores within the Uinta Region, geochemically evaluated via portable X-ray fluorescence (n=3,113) and inductively coupled plasma-mass spectrometry (n=143) elemental abundance methods. Historical evaluations of geochemical data on Uinta Region coal and coal-adjacent data are sparse, emphasizing the statistical significance of this study’s analyses. These results support the utilization of active mines and coal processing waste piles for the future of domestic rare earth element extraction, offering economic and environmental solutions to pressing global demands.
This dataset provides access to data from personnel records of miner employment from 1900–1919. Records from the Utah Copper Company are handwritten and contain the following employee information: name, date employed, address, dependents, age, weight, height, eyes, hair, gender, and nationality. Data has been transcribed and released as a .tsv (Tab Separated Values) file. Technical metadata has been redacted.
Isotopic data in this database includes 863 samples from 34 papers and three previously published compilations. For each sample, this database provides location, age, and reference information presented in the first columns. Locations are recorded in latitude and longitude (WGS84). The information about the location source uses the same criteria used for the elemental geochemical database (“GPS”, “Figure-Polygon” and “Figure-Point”). Age is provided according to the original source and includes two general scenarios: an age with uncertainty at 2σ level and a general estimation for the age with no associated error. Sm-Nd and Rb-Sr data are based on whole rock analysis. Lu-Hf data are based on zircon analysis. Sm-Nd data includes Sm and Nd in ppm, 147Nd/144Nd and 143Nd/144Nd in ratios, Nd uncertainties at 2σ level, and Nd values in the epsilon notation as presented in the data source. Rb-Sr data include Rb and Sr in ppm; 87Rb/86Sr, 87Sr/86Sr, and initial 87Sr/86Sr in ratios, and Sr uncertainties at 2σ level. Lu-Hf data includes 176Yb/177Hf, 176Lu/177Hf, and 176Hf/177Hf rations and their uncertainties at 2σ level, the initial 176/177Hf ratio, Hf values in the epsilon notation and Hf uncertainties at 1σ and 2σ level, all as presented in the data source. Uncertainties related to the data location and heterogenous data distribution should be considered. Samples for the two batholiths in Mongolia are concentrated in central Mongolia and include Sm-Nd and Lu-Hf data. In the Erguna and Xing’an magmatic provinces, available samples provide mainly Lu-Hf data which are relatively better distributed than in the other regions.
This dataset contains code used to generate and the results of 2D numerical modeling simulations of ambient resonance in damaged rock slopes. All simulations were performed using the Universal Distinct Element Code (UDEC) version 7.0. We simulated progressive damage for three different landslide types: slab toppling, flexural toppling, and planar sliding. For each scenario we simulated several stages of progressive rock slope damage. Subsequently, we recorded the resonance response of the rock slope at each stage by measuring x-direction velocity at one or more measuring points throughout the model.
This data set contains 12-hour manual new snow and liquid precipitation equivalent (LPE) observations collected at the Alta-Collins (CLN) snow-study plot during the 2000–2023 cool seasons (October 1–April 30 with the year defined by the ending calendar year). CLN is located mid-mountain at Alta Ski Area in the Wasatch Range of northern Utah (approximately 111.63889W, 40.57607N) at an elevation of 2945 m.
The purpose of this derived dataset was to analyze menstrual cycle lengths in relation to lunar calendar. This datafile of start and end date of 3324 menstrual cycles of 581 women is part of a combined dataset of three cohorts of heterosexually active women who received instruction in the Creighton Model FertilityCare System (CrM) through centres across the United States and Canada. The CrM has standardised protocols for teaching women how to observe, record, and interpret daily vaginal discharge from bleeding and cervical fluid on a daily diary, called a CrM chart, and to use these standardised observations to identify the estimated time of ovulation and days when intercourse is likely to result in pregnancy. The cohorts included: "Creighton Model Effectiveness, Intentions, and Behaviours Assessment" (CEIBA) (2009–2013), a prospective cohort of women without known subfertility, aimed to evaluate and classify pregnancy rates and pregnancy intentions during use of the CrM; "Creighton Model MultiCenter Fecundability Study" (CMFS) (1990–1996), a retrospective cohort of presumably fertile and subfertile women using CrM, aimed to assess the relationship between vulvar mucus observations and the day and cycle-specific probabilities of conception; and "Time to Pregnancy in Normal Fertility" (TTP) (2003–2006), a parallel-randomised trial, which aimed to assess the impact of CrM use on time to pregnancy in couples of proven fertility trying to conceive. Each of the cohorts aimed to include heterosexually active couples with normal fecundity. Eligibility criteria were assessed by women's responses to the CrM general intake form and/or a screening questionnaire. Eligibility requirements in the original studies included women, age 18–40 years old (upper limit of 35 years for TTP), not pregnant at entry, having regular menstrual bleeding, and not breast feeding (CMFS and TTP), or if breast feeding, not doing so exclusively (CEIBA). Recent users of oral contraceptives had to have at least one menstrual bleed (CEIBA) or two menstrual bleeds (TTP) since stopping the oral contraceptives; however, for CMFS there was no restriction for time since discontinuing oral contraceptives. All studies also required normal menstrual patterns since last use of depo-medroxy-progesterone acetate or a hormonal intra-uterine device.
The COVID-19 pandemic disrupted scientific research, teaching, and learning in higher education and forced many institutions to explore new modalities in response to the abrupt shift to remote learning. Accordingly, many colleges and universities struggled to provide the training, technology, and best practices to support faculty and students, especially those at historically disadvantaged and underrepresented institutions. In this study we investigate different remote learning modalities to improve and enhance research education training for faculty and students. We specifically focus on Responsible and Ethical Conduct of Research (RECR) and Research Mentoring content to help address the newly established requirements of the National Science Foundation for investigators. To address this need we conducted a workshop to determine the effectiveness of three common research education modalities: Live Lecture, Podcast, and Reading. The Live Lecture sessions provided the most evidence of learning based on the comparison between pre- and post-test results, whereas the Podcast format was well received but produced a slight (and non-significant) decline in scores between the pre- and post-tests. The Reading format showed no significant improvement in learning. The results of our workshop illuminate the effectiveness and obstacles associated with various remote learning modalities, enabling us to pinpoint areas that require additional refinement and effort, including the addition of interactive media in Reading materials.
This dataset contains GIS map data and monitoring datasets collected between 2018 and 2022 at the Courthouse Mesa rock slope instability near Moab, Utah. Map data consist of an orthophoto, a polyline shapefile delineating mapped surficial cracks, and a point shapefile showing the locations of crack width monitoring points (M1–M5) and a vibrating wire crackmeter. Monitoring data include four years of continuous crack aperture measurements from the crackmeter, periodic crack width measurements from M1–M5, and three sets of air temperature measurements recorded between 2018 and 2022. Air temperatures were measured at the surface and inside the crack at several depths throughout the monitoring period.
In the element database, major elements are reported in weight percent oxide (wt%). Trace element concentrations are reported in parts per million (ppm). Available lithologic information (“lithology” column) and the type of igneous sample (intrusive or extrusive in the “Sample-Type” column) were included. The name of the area or of the corresponding igneous body were included when available (“Location/Body-Name” column). The location of the samples is reported in decimal degrees (WGS84), however, uncertainties explained below must be considered. Coordinates were obtained from three different ways of presenting the information about the location. The three scenarios are distinguished as “GPS”, “Figure-Point”, and “Figure-Polygon” in the “Location-Type” column. Samples with a location in a coordinate system were transformed to decimal degrees (WGS84) and classified as “GPS”. Samples individually identified in a georeferenced geologic map were approximately located after georeferencing the map in Google Earth or ArcGis (“Figure-Point”). Samples identified with a polygon in a georeferenced map (through age, body name or unidentified sample locations), but without more detailed information were approximately located in the middle of the corresponding polygon after georeferencing the map in Google Earth or ArcGis (“Figure-Polygon”). Precise “GPS” locations were obtained for 358 analyses, and approximate locations were obtained for 428 analyses. The age information was organized using three categories: “Age-Approximation”, “Age-number”, and “Age-Error”. “Age-approximation” corresponds to the age information from original paper or from an additional reference detailed in the “Reference-Age” column. “Age-number” corresponds to the age reported in the original paper or previous compilation, or to the average age calculated from a given age range. “Age-Error” corresponds to the error presented in the original paper or previous compilation, or to half of the age range. Information about the methods, analyzed material and laboratory name was included when available. Lastly, the original data sources are available in the “Reference” column. References from previous compilations incorporated in this database are specified as “Compilation-Reference”. Additional references used for constraining the age are detailed in “Reference-Age” column.
Data that were incorrectly reported (e.g., reporting average compositions instead of sample composition) or with anomalous trace element concentrations were filtered-out from the element database. Analyses from weathered or altered samples producing high total volatile content (LOI> 5 wt%) were removed. Samples with no available information to approximately locate them or to constrain their age were eliminated. Despite this screening process, the database suffers from uncertainties related to approximated ages and locations and variable information regarding the lithology, and availability of trace elements The inhomogeneity in this database is explicit and uncertainties related to the age and location should be carefully considered in any interpretation. The final compilation contains 787 geochemical analyses (major, minor and trace elements) and includes data from 36 studies.
Abstract from Paper (Lange et. al, 2022): Atypical atrial flutter is seen post-ablation in patients, and it can be challenging to map. These flutters are typically set up around areas of scar in the left atrium. MRI can reliably identify left atrial scar. We propose a personalized computational model using patient specific scar information, to generate a monodomain model. In the model conductivities are adjusted for different tissue regions and flutter was induced with a premature pacing protocol. The model was tested prospectively in patients undergoing atypical flutter ablation. The simulation-predicted flutters were visualized and presented to clinicians. Validation of the computational model was motivated by recording from electroanatomical mapping. These personalized models successfully predicted clinically observed atypical flutter circuits and at times even better than invasive maps leading to flutter termination at isthmus sites predicted by the model.
The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard.
The data was obtained from the FDTD simulations. For one of the FDTD simulations, the conductivity data for British Columbia was used in order to obtain the simulated data. The data obtained from simulations are post-processed using MATLAB for plotting the figures in the paper.
This dataset summarizes burial counts according to burial type (free, temporary, or perpetual) for the cemeteries of Père-Lachaise, Montmartre, and Montparnasse in Paris. The data covers the period of 1804 to 1840 and was derived from the digitized daily records of burial for the city of Paris, which are currently held in the Archives de Paris. See Registres journaliers d'inhumation https://archives.paris.fr/r/216/cimetieres). These data are organized by the number of each burial type recorded per page of the digitized records.
This dataset accounts for all jobs undertaken by the Société Le Roy Bouillon, a funerary monuments company in Paris, from 1890 to 1902. The first sheet, “Activity Data” accounts for each job and the fee charged to the client for that job. It also categories each job as either a new cemetery construction, maintenance to existing cemetery structures, or other jobs unrelated to cemetery construction. The second sheet, “Outside Paris,” summarizes the annual activity, recording the number of projects undertaken within Paris versus outside of the city, new constructions versus maintenance work, and revenue coming in from each type of job. The original records are currently housed in a private collection in Paris and were manually transcribed by the author.
The dataset was collected in the process of carrying out a research on the effects of photochemical aging and interactions with secondary organic aerosols on cellular toxicity of combustion particles between the year 2021 to 2022
We determined whether a large, multi-analyte panel of circulating biomarkers can improve detection of early-stage pancreatic ductal adenocarcinoma (PDAC). We defined a biologically relevant subspace of blood analytes based on previous identification in premalignant lesions or early-stage PDAC and evaluated each in pilot studies. The 31 analytes that met minimum diagnostic accuracy were measured in serum of 837 subjects (461 healthy, 194 benign pancreatic disease, 182 early stage PDAC). We used machine learning to develop classification algorithms using the relationship between subjects based on their changes across the predictors. Model performance was subsequently evaluated in an independent validation data set from 186 additional subjects.
This is the IDL code used to create the results published in Mace, G. G., Benson, S., Humphries, R., Gombert P. M., Sterner, E.: Natural marine cloud brightening in the Southern Ocean, Atmospheric Chemistry and Physics. The IDL code processes MOD03 geolocation fields, MOD06_L2 cloud retrievals, MODIS ocean color chlorophyll-a concentrations and CERES shortwave albedo data that is distributed by NASA data archives. It creates statistical results for non-precipitating or weakly precipitating warm, liquid, shallow, marine boundary layer clouds.
The data are bed-scale measurements taken from virtual outcrop models (Morris, E.A., Atlas, C.E., Johnson, C.L., 2023, Architectural analysis of the Panther Tongue - virtual outcrop models) and calibrated with measurements taken at outcrop in the field.
Ultralow-velocity zones (ULVZs) have been studied using a variety of seismic phases; however, their physical origin is still poorly understood. Short period ScP (S wave converted to, and reflected as, P wave from the core-mantle boundary) waveforms are extensively used to infer ULVZ properties because they may be sensitive to all ULVZ elastic moduli. However, ScP waveforms are additionally complicated by the effects of path attenuation, coherent noise, and source-time function (STF) complexity. To address these complications, we developed a hierarchical Bayesian inversion method that allows us to invert ScP waveforms from multiple events simultaneously and accounts for path attenuation and correlated noise. The inversion method is tested with synthetic predictions which show that the inclusion of attenuation is imperative to recover ULVZ parameters and that the ULVZ thickness and S-wave velocity decrease (δVS) are most reliably recovered. Utilizing multiple events reduces the effects of coherent noise and STF complexity, which in turns allows for the inclusion of more data to be used in the analyses. We next applied the method to ScP data recorded in Australia for 291 events that sample the CMB beneath the Coral Sea. Our results indicate that S-wave velocity across the region is ~-14% in average, but there is a greater variability in the south than that in the north. P-wave velocity reductions and density perturbations are mostly below 10%. These ScP data show more than one ScP post-cursor in some areas which may indicate complex 3-D ULVZ structures. Seismic data are provided for 291 earthquakes in Northern Territory, Australia.
Abstract: Data for Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah
This data file was used to estimate the performance of the Alphasense OPC-N3 and PMS5003 sensor in measuring ambient PM10, especially during dust events, and to obtain correction factors to correct the PMS5003 data. During April 2022, the OPC-N3 and PMS5003 sensors were collocated with federal equivalent method (FEM)at two Utah Division of Air Quality (UDAQ) sites: Hawthorne (HW) station and Environmental Quality (EQ) station. One residential site (RS)was also tested, with OPC-N3 and PMS5003 collocated with GRIMM portable aerosol spectrophotometer. The FEM data (PM2.5 and PM10 concentrations) and meteorological parameters (wind speed, wind direction, relative humidity, and temperature) for the two UDAQ sites were downloaded from the EPA website. The Excel sheet contained all the raw data and the processed data. The FEM, OPC-N3, and PMS5003 measurements were labeled as FEM-YYY, OPC-YYY, and PMS-YYY, where YYY represents the sites nomenclature, i.e., HW, EQ, and RS. The sheet labeled “HW”, “RS”, and,” EQ” contained the raw measurements (meteorological, PM10, and PM2.5 (whenever applicable)) for the sites. The sheet” PM-ratio-based correlation” provided the data used to get the PM-ratio-based correlation. Briefly, based on the ratio of FEM-HW PM2.5/PM10, the FEM-HW and PMS-HW PM10 measurements were segregated into six bins: PM2.5/PM10: <0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.7, and >0.7. For each bin, the co-located PMS-HW PM10 concentrations were linearly regressed against the FEM-HW PM10 concentrations to obtain correction factors (slope and intercept). These correction factors were later used to correct the PMS PM10 concentrations at the other two locations (RS and EQ), presented in the sheets with labels “RS correction using GRIMM ratio”, “RS correction using opc ratio” and “EQ corrected using EQ ratio”. Each sheet also includes the calculation of RMSE and NRMSE of OPC-YYY and PMS-YYY against FEM-YYY, with YYY as the site nomenclature.
The dataset contains Gas Chromatography (GC) data pertaining to the bulk electrolytic experiments, biocatalytic, organocatalytic reactions, and standards used in the study. The standard GC files calibrate the sensitivity of the column in the Gas Chromatograph to 1-heptanol, heptanal, and the corresponding alpha-hydrazino aldehyde. This information is used to quantify the peaks of 1-heptanol and heptanal obtained in the bulk electrolytic experiments and the alpha-hydrazino aldehyde obtained in the organocatalytic step.
This file contains experimental data from the Ph.D. thesis “Mechanisms Governing Ash Aerosol Formation and Deposition during Solid Fuel Combustion” at the University of Utah. The data include particle sizes, weights, and compositions of ash aerosols and deposits formed in the combustion of a range of fossil and biomass solid fuels under a wide range of conditions. Operation pressure, fuel composition and combustor scale are changed across these tests. These experimental data can provide information and inputs for further studies, such as modeling the ash deposition process, in the future.
Research background: Concern about global warming has called for new combustion systems to be used in order to reduce CO2 emissions from coal-fired power generation. Pressurized oxy-coal combustion coupled with carbon capture and storage as well as co-firing biomass with coal are gaining more interest in building new power plants and retrofitting existing plants. The combustion conditions of these systems could be significantly changed and thus affect the ash formation and deposition. The experimental work of this thesis consists of combustion tests at various scales and conditions, namely, on a 100 kWth rated oxy-fuel combustor (OFC), a 300 kWth rated entrained flow pressurized reactor (EFPR), a 1.5 MWth rated horizontal multifuel combustor (L1500) and a 500 MWe full-size utility boiler (Hunter). The solid fuels involved in these tests include pulverized coal, torrefied wood, blend fuels of the coal and wood, and coal with K/Cl/S additives. In each test, iso-kinetically sampled ash aerosols are analyzed in terms of particle size distributions and size-segregated compositions. Ash deposition rates are measured using a surface-temperature-controlled probe which simulates the deposition process on superheater tubes.
This dataset is a custom Kraken2 formatted database for the identification of Fungi from shotgun metagenomic data. Kraken2 is a k-mer based read classifier (Wood et al. 2019; https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1891-0). The dataset was built with the default k-mer length (k=35) from all publicly available fungal genomes at JGI Mycocosm ( https://mycocosm.jgi.doe.gov/mycocosm/home), and all archaea, bacteria, viral, plasmid, human, fungi, plant, and protozoa genomes, as well as the UniVec Core and nt reference database at NCBI ( https://www.ncbi.nlm.nih.gov/). The reference genomes and sequences were downloaded from JGI and NCBI in March 2020.
This dataset contains the materials necessary to reproduce the study submitted to Remote Sensing: "Tradeoffs Between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping". This includes the raw imagery output from the camera aboard the unoccupied aerial vehicle, the Red-Edge MX, captured over the Howard Slough Waterfowl Management Area, Utah, in August of 2020, resampled images, code to resample the images, a link to ground reference data, and the training and testing data used for the convolutional neural network in the study.
This dataset accompanies the research article entitled, "Ground Motion Amplification at Natural Rock Arches in the Colorado Plateau ," where we analyzed 13 sandstone arches in Utah, computing site-to-reference spectral amplitude ratios from continuous ambient seismic data and comparing these to spectral ratios during earthquakes and teleseismic activity. Included in this dataset are the arch vibration data.
This dataset includes a 3-D model of the Courthouse Mesa toppling rock slab instability in Utah. These data were used in conjunction with ambient seismic array data to conduct modal analyses and improve the structural characterization of the rock slope instability. Data include a 3-D model of the rock slope instability (.stl) and a COMSOL Multiphysics project file showing the boundary conditions and solutions of the best model run (.mph). This dataset accompanies the research article entitled "Rock slope instability structural characterization using array-based modal analysis."
The similar orbital distances and incidence rates of debris disks and the prominent rings observed in protoplanetary disks suggest a potential connection between these structures. We explore this connection with new calculations that follow the evolution of rings of pebbles and planetesimals as they grow into planets and generate dusty debris. Depending on the initial solid mass and planetesimal formation efficiency, the calculations predict diverse outcomes for the resulting planet masses and accompanying debris signature. When compared with debris disk incidence rates as a function of luminosity and time, the model results indicate that the known population of bright cold debris disks can be explained by rings of solids with the (high) initial masses inferred for protoplanetary disk rings and modest planetesimal formation efficiencies that are consistent with current theories of planetesimal formation. These results support the possibility that large protoplanetary disk rings evolve into the known cold debris disks. The inferred strong evolutionary connection between protoplanetary disks with large rings and mature stars with cold debris disks implies that the remaining majority population of low-mass stars with compact protoplanetary disks leave behind only modest masses of residual solids at large radii and evolve primarily into mature stars without detectable debris beyond 30 au. The approach outlined here illustrates how combining observations with detailed evolutionary models of solids strongly constrains the global evolution of disk solids and underlying physical parameters such as the efficiency of planetesimal formation and the possible existence of invisible reservoirs of solids in protoplanetary disks.
This dataset accompanies the research article entitled, "Ambient vibration modal analysis of natural rock towers and fins," where we investigate the ambient vibrations of 14 rock rowers and perform modal analysis on 3D models of the landforms. Included are the vibration data and 3D models.
This dataset encompasses the valid, completed, and qualitative data collected during the 2021 “Survey of Anime Convention Attendance in Response to Covid-19.” This survey was distributed online through social media platforms, community spaces, and industry listservs/resources in order to reach organizers, attendees, and fans of anime conventions (i.e., “cons”). The survey was intended to discover how those who attend anime conventions (i.e., "con-goers") have been experiencing changes in the anime convention scene during the COVID-19 pandemic, particularly in 2020-2021. Traditionally, anime cons and con-related activities such as cosplay (dressing up as a favorite character) are held in person. However, in 2020-2021, most cons have been cancelled or moved online; this is the first time in over 40 years, in the US and worldwide, that the anime convention scene has been so quiet. With this survey, investigators sought to capture firsthand impressions of this unprecedented moment, learning how con-goers were experiencing these changes and whether they had safety or other concerns about anime cons returning in late 2021 and early 2022.
Classification of barrier island morphology stems from the seminal work of M. O. Hayes and others, which linked island shape to tidal range and wave height and defined coastal energy regimes (i.e., wave-dominated, mixed energy, tide-dominated). If true, this general relationship represents a process-based framework to link modern and ancient systems, and is key for determining paleomorphodynamic relationships. Here we present a new semi-global database of barrier islands and spits (n = 702). Shape parameters (aspect, circularity, and roundness) are used to quantify island boundary shape, and assess potential correlation with coastal energy regime using global wave and tide models. In adopting the original energy classification as originally put forth (i.e., wave dominated, wave-influenced mixed, tide-influenced mixed, tide dominated), results show that wave-dominated islands have statistically different mean shape values from those in the mixed energy fields, but the two mixed energy designations are not distinct from each other. Furthermore, each energy regime field contains a wide range of island shapes, with no clear trends present. Linear regression modeling shows that tidal range and wave height account for < 10% of the documented variance in island shape, a strong indication that other controls must be considered. Therefore, while energy regime distinctions can be used descriptively, their utility in predicting and constraining island shape is limited: barrier island shape is not indicative of coastal energy regime, and vice versa. Our analysis also demonstrates empirical scaling relationships among modern barrier islands for the first time, with implications for subsurface prediction. and This is the dataset of the Modern Barrier Island Database published in Mulhern et al., 2017 Marine Geology paper titled "Is Barrier Island Morphology a Function of Wave and Tide Regime?" with the DOI https://doi.org/10.1016/j.margeo.2017.02.016. If using this dataset please cite both the dataset and the paper.
The objective of this study was to determine the influence of face shields on the concentration of respirable aerosols in the breathing zone of the wearer. The experimental approach involved the generation of poly-dispersed respirable test dust aerosol in a low-speed wind tunnel over 15 minutes, with a downstream breathing mannequin. Aerosol concentrations were measured in the breathing zone of the mannequin and at an upstream location using two laser spectrophotometers that measured particle number concentration over the range 0.25-31 µm. Three face shield designs were tested (A, B and C), and were positioned on the mannequin operated at a high and low breathing rate. Efficiency – the reduction in aerosol concentration in the breathing zone – was calculated as a function of particle size and overall, for each face shield. Face shield A, a bucket hat with flexible shield, had the highest efficiency, approximately 95%, while more traditional face shield designs had efficiency 53-78%, depending on face shield and breathing rate. Efficiency varied by particle size, but the pattern differed among face shield designs. Face shields decreased the concentration of respirable aerosols in the breathing zone, when aerosols were carried perpendicular to the face. Additional research is needed to understand the impact of face shield position relative to the source.
The Differential Emissivity Imaging Disdrometer (DEID) is a new evaporation-based optical and thermal instrument designed to measure the mass, size, density, and type of individual hydrometeors and their bulk properties. Hydrometeor spatial dimensions are measured on a heated metal plate using an infrared camera by exploiting the much higher thermal emissivity of water compared with metal. As a melted hydrometeor evaporates, its mass can be directly related to the loss of heat from the hotplate assuming energy conservation across the hydrometeor. The heat-loss required to evaporate a hydrometeor is found to be independent of environmental conditions including ambient wind velocity, moisture level, and temperature. The difference in heat loss for snow versus rain for a given mass offers a method for discriminating precipitation phase. The DEID measures hydrometeors at sampling frequencies up to 1 Hz with masses and effective diameters greater than 1 µg and 200 µm, respectively, determined by the size of the hotplate and the thermal camera specifications. Measurable snow water equivalent (SWE) precipitation rates range from 0.001 to 200 mm h−1, as validated against a standard weighing bucket. Preliminary field-experiment measurements of snow and rain from the winters of 2019 and 2020 provided continuous automated measurements of precipitation rate, snow density, and visibility. Measured hydrometeor size distributions agree well with canonical results described in the literature. and A new precipitation sensor, the Differential Emissivity Imaging Disdrometer (DEID), is used to provide the first continuous measurements of the mass, diameter, and density of individual hydrometeors. The DEID consists of an infrared camera pointed at a heated aluminum plate. It exploits the contrasting thermal emissivity of water and metal to determine individual particle mass by assuming that energy is conserved during the transfer of heat from the plate to the particle during evaporation. Particle density is determined from a combination of particle mass and morphology. A Multi-Angle Snowflake Camera (MASC) was deployed alongside the DEID to provide refined imagery of particle size and shape. Broad consistency is found between derived mass-diameter and density-diameter relationships and those obtained in prior studies. However, DEID measurements show a generally weaker dependence with size for hydrometeor density and a stronger dependence for aggregate snowflake mass.
This study of the role and impact of the subject selector in academic libraries is unique and long overdue. We focused on the Pac-12 university libraries, a representative sample of nationwide academic libraries. The strength of our investigation is this small, focused sample size and unique statistical analysis of subject specialists. There is a wide variety among these libraries with respect to the hiring requirements for MLIS, the MLIS with an additional advanced-subject master’s degree, and those libraries who hire non-MLIS librarians. This investigation has the possibility of promoting greater awareness for the future of subject specialists in academic libraries.
This dataset accompanies the research article entitled, "Etiology-Specific Remodeling in Ventricular Tissue of Heart Failure Patients and its Implications for Computational Modeling of Electrical Conduction," where we quantified fibrosis and performed electrophysiological simulation to investigate electrical propagation in etiologically varied heart failure tissue samples. Included are raw confocal microscopic images, data for extracting and processing the raw images and script to analyze fibrosis and generate meshes for simulation.
This dataset comprises MODTRAN radiative transfer simulations used to determine scene-specific enhancement spectra for matched filter retrieval of CH4 and CO2 concentrations from imaging spectroscopy data. An example implementation to generate a enhancement spectrum is also included.