Background: The objective of this study was to evaluate the effect of utilising larger lens cubes on phacoemulsification efficiency and chatter using 3 tips of different sizes and 2 ultrasound (US) approaches.
Methods: This was an in vitro laboratory study conducted at the John A. Moran Eye Center Laboratory, University of Utah, Salt Lake City, UT, USA. Porcine lens nuclei were formalin-soaked for 2 hours, then divided into either 2.0 mm or 3.0 mm cubes. 30 degree bent 19 G, 20 G, and 21 G tips were used with a continuous torsional US system; and straight 19 G, 20 G, and 21 G tips were used with a micropulse longitudinal US system. Efficiency and chatter were determined.
Results: Mean phacoemulsification removal time was higher with the 3.0 mm lens cube for all US variations and tip sizes. There were statistically significant differences between the 19 G and 21 G tips with micropulse longitudinal US using the 2.0 mm lens cube and the 3.0 mm lens cube, as well as with continuous transversal US using the 2.0 mm lens cube and the 3.0 mm lens cube. There was no significant difference between 19 G and 20 G tips with either lens cube size in either US approach. However, using both US approaches, trends were identical for both lens cube sizes in which the 19 G tips performed better than the 20 G and 21 G tips.
Conclusion: Regardless of lens size, the 19 G needle was the most efficient, with the fewest outliers and smallest standard deviations.
Light-scattering spectroscopy (LSS) is an established optical approach for nondestructive characterization of biological tissues. Here, we investigated the capabilities of LSS and convolutional neural networks (CNNs) to quantitatively characterize the composition and arrangement of cardiac tissues. We assembled tissue constructs from 200 μm thick sections of fixed myocardium and aortic wall. Thickness of the tissue constructs was similar to the thickness of atrial free wall. In the assembled constructs, the aortic sections represented fibrotic tissue and the depth, volume fraction, and arrangement of these fibrotic insets were varied. We gathered spectra with wavelengths from 500-1100 nm from the constructs at multiple locations relative to a light source. We used single and combinations of two spectra for training of CNNs. With independently measured spectra, we assessed the accuracy of the trained CNNs for classification of tissue constructs from single spectra and combined spectra. In general, classification accuracy with single spectra was smaller than with combined spectra. Combined spectra including spectra from fibers distal from the illumination fiber typically yielded a higher accuracy than proximal single collection fibers. Maximal classification accuracy of depth detection, volume fraction and permutated arrangements was (mean±stddev) 88.97±2.49%, 76.33±1.51% and 84.25±1.88%, respectively. Our studies demonstrate the reliability of quantitative characterization of tissue composition and arrangements using a combination of LSS and CNNs. Potential clinical applications of the developed approach include intraoperative quantification and mapping of atrial fibrosis as well as assessment of ablation lesions.
Abstract from Paper (Lange et. al, 2022): Atypical atrial flutter is seen post-ablation in patients, and it can be challenging to map. These flutters are typically set up around areas of scar in the left atrium. MRI can reliably identify left atrial scar. We propose a personalized computational model using patient specific scar information, to generate a monodomain model. In the model conductivities are adjusted for different tissue regions and flutter was induced with a premature pacing protocol. The model was tested prospectively in patients undergoing atypical flutter ablation. The simulation-predicted flutters were visualized and presented to clinicians. Validation of the computational model was motivated by recording from electroanatomical mapping. These personalized models successfully predicted clinically observed atypical flutter circuits and at times even better than invasive maps leading to flutter termination at isthmus sites predicted by the model.
The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard.
The COVID-19 pandemic disrupted scientific research, teaching, and learning in higher education and forced many institutions to explore new modalities in response to the abrupt shift to remote learning. Accordingly, many colleges and universities struggled to provide the training, technology, and best practices to support faculty and students, especially those at historically disadvantaged and underrepresented institutions. In this study we investigate different remote learning modalities to improve and enhance research education training for faculty and students. We specifically focus on Responsible and Ethical Conduct of Research (RECR) and Research Mentoring content to help address the newly established requirements of the National Science Foundation for investigators. To address this need we conducted a workshop to determine the effectiveness of three common research education modalities: Live Lecture, Podcast, and Reading. The Live Lecture sessions provided the most evidence of learning based on the comparison between pre- and post-test results, whereas the Podcast format was well received but produced a slight (and non-significant) decline in scores between the pre- and post-tests. The Reading format showed no significant improvement in learning. The results of our workshop illuminate the effectiveness and obstacles associated with various remote learning modalities, enabling us to pinpoint areas that require additional refinement and effort, including the addition of interactive media in Reading materials.
We determined whether a large, multi-analyte panel of circulating biomarkers can improve detection of early-stage pancreatic ductal adenocarcinoma (PDAC). We defined a biologically relevant subspace of blood analytes based on previous identification in premalignant lesions or early-stage PDAC and evaluated each in pilot studies. The 31 analytes that met minimum diagnostic accuracy were measured in serum of 837 subjects (461 healthy, 194 benign pancreatic disease, 182 early stage PDAC). We used machine learning to develop classification algorithms using the relationship between subjects based on their changes across the predictors. Model performance was subsequently evaluated in an independent validation data set from 186 additional subjects.
The objective of this study was to determine the influence of face shields on the concentration of respirable aerosols in the breathing zone of the wearer. The experimental approach involved the generation of poly-dispersed respirable test dust aerosol in a low-speed wind tunnel over 15 minutes, with a downstream breathing mannequin. Aerosol concentrations were measured in the breathing zone of the mannequin and at an upstream location using two laser spectrophotometers that measured particle number concentration over the range 0.25-31 µm. Three face shield designs were tested (A, B and C), and were positioned on the mannequin operated at a high and low breathing rate. Efficiency – the reduction in aerosol concentration in the breathing zone – was calculated as a function of particle size and overall, for each face shield. Face shield A, a bucket hat with flexible shield, had the highest efficiency, approximately 95%, while more traditional face shield designs had efficiency 53-78%, depending on face shield and breathing rate. Efficiency varied by particle size, but the pattern differed among face shield designs. Face shields decreased the concentration of respirable aerosols in the breathing zone, when aerosols were carried perpendicular to the face. Additional research is needed to understand the impact of face shield position relative to the source.
This dataset accompanies the research article entitled, "Etiology-Specific Remodeling in Ventricular Tissue of Heart Failure Patients and its Implications for Computational Modeling of Electrical Conduction," where we quantified fibrosis and performed electrophysiological simulation to investigate electrical propagation in etiologically varied heart failure tissue samples. Included are raw confocal microscopic images, data for extracting and processing the raw images and script to analyze fibrosis and generate meshes for simulation.
This study aims to quantify rare earth element enrichment within coal and coal-adjacent strata in the Uinta Region of Utah and western Colorado. Rare earth elements are a subset of critical minerals used for renewable energy technology in the transition toward carbon-neutral energy. This data contains samples from seven active mines and seven stratigraphically complete cores within the Uinta Region, geochemically evaluated via portable X-ray fluorescence (n=3,113) and inductively coupled plasma-mass spectrometry (n=143) elemental abundance methods. Historical evaluations of geochemical data on Uinta Region coal and coal-adjacent data are sparse, emphasizing the statistical significance of this study’s analyses. These results support the utilization of active mines and coal processing waste piles for the future of domestic rare earth element extraction, offering economic and environmental solutions to pressing global demands.
A comprehensive geochemical and stratigraphic study of Cretaceous coal-bearing strata in Utah and western Colorado was performed to evaluate geologic trends in REE-enrichment, as well as elucidate enrichment mechanisms. Preliminary portable X-ray fluorescence (pXRF) analyses (n = 5659) was combined with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) analyses (n = 135) on particularly REE-enriched samples. Sampling and analyses from active and historic mines as well as nearby cores and outcrops were performed with an emphasis on sedimentary, stratigraphic, geographic, and mining context.
The microbiology data represents the microorganisms recovered during the study period at the University of Utah hospital from samples collected from patients, environmental surfaces, and healthcare personnel (HCP) hands using premoistened sponges. Patient samples were collected daily from the axilla, groin, and perianal areas or stool. Environmental samples were collected daily from room surfaces and unit common areas (such as bed rails, overbed tables, door handles, computer keyboards, and other high-touch areas). HCP hands were periodically sampled upon HCP exit from a patient room after engaging in health care activities. Samples were collected from the 20-bed University of Utah Hospital Cardiovascular ICU (CVICU) over a 54 day period. The information from these datasets can be used to understand how different organisms appear and move throughout a hospital ward over a period of time.
The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard. This dataset contains cleaned sensor pings of RFD reads between healthcare worker worn sensors and environmental sensors placed in facility using methods described in the "Data Cleaning Steps" section.
This dataset contains room occupancy during the study period at University of Utah hospital. Admission, Discharge, and Transfer (ADT) data is captured in participating hospitals to characterize room occupancy and non-occupancy in wards. These data are pulled from multiple sources collected during the study by study staff as well as harvested EHR data. Data were adjudicated and compiled into one comprehensive file. Data manipulation included redaction of dates, replaced with study days 1-n, as well as transformation from long format to wide for ease of use.
This dataset provides access to data from personnel records of miner employment from 1900–1919. Records from the Utah Copper Company are handwritten and contain the following employee information: name, date employed, address, dependents, age, weight, height, eyes, hair, gender, and nationality. Data has been transcribed and released as a .tsv (Tab Separated Values) file. Technical metadata has been redacted.
Current treatments for methicillin-resistant Staphylococcus aureus (MRSA) infections require intravenously delivered vancomycin; however, systemically delivered vancomycin has its problems. To determine the feasibility and safety of locally delivering vancomycin hydrochloride (~25 mg/Kg) to the medullary canal of long bones, we conducted a pharmacokinetics study using a rat tibia model. We found that administering the vancomycin intraosseously resulted in very low concentrations of vancomycin in the blood plasma and the muscle surrounding the tibia, reducing the risk for systemic toxicity, which is often seen with traditional intravenous administration of vancomycin. Additionally, we were able to inhibit the development of osteomyelitis in the tibia if the treatment was administered locally at the same time as a bacterial inoculum (i.e., Log10 7.82 CFU/mL or 6.62x107 CFU/mL), when compared to an untreated group. These findings suggest that local intramedullary vancomycin delivery can achieve sufficiently high local concentrations to prevent development of osteomyelitis while minimizing systemic toxicity.
The Purkinje system (PS) and the His bundle have been recently implicated as an important driver of the rapid activation rate after 1-2 minutes of ventricular fibrillation (VF). It is unknown whether activations during VF propagate through the His-Purkinje system to other portions of the the working myocardium (WM). Little is known about restitution characteristic differences between the His bundle and working myocardium at short cycle lengths. In this study, rabbit hearts (n=9) were isolated, Langendorff- perfused, and electromechanically uncoupled with blebbistatin (10 μM). Pacing pulses were delivered directly to the His bundle. By using standard glass microelectrodes, action potentials duration (APD) from the His bundle and WM were obtained simultaneously over a wide range of stimulation cycle lengths (CL). The global F-test indicated that the two restitution curves of the His bundle and the WM are statistically significantly different (P<0.05). Also, the APD of the His bundle was significantly shorter than that of WM throughout the whole pacing course (P<0.001). The CL at which alternans developed in the His bundle vs. the WM were shorter for the His bundle (134.2±13.1ms vs. 148.3±13.3ms, P<0.01) and 2:1 block developed at a shorter CL in the His bundle than in WM (130.0±10.0 vs. 145.6±14.2ms, P<0.01). The His bundle APD was significantly shorter than that of WM under both slow and rapid pacing rates, which suggest that there may be an excitable gap during VF and that the His bundle may conduct wavefronts from one bundle branch to the other at short cycle lengths and during VF.
The data set includes individual images of mouse cochleae, both scanning electron micrographs and fluorescent micrographs, used to generate aggregated data described in Pecha PP, Almishaal AA, Mathur PD, et al. Role of Free Radical Formation in Murine Cytomegalovirus–Induced Hearing Loss. Otolaryngology–Head and Neck Surgery. 2020;162(5):709-717. doi:10.1177/0194599820901485 and Objectives
The goal of the study was to determine whether reactive oxygen species (ROS) mediates cytomegalovirus (CMV)–induced labyrinthitis.
Study Design
Murine model of CMV infection.
Subjects and Methods
Nrf2 knockout mice were inoculated with murine CMV. Auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs) were then performed on these and uninfected controls. BALB/c mice were inoculated with murine CMV to determine whether a marker for ROS production, dihydroethidium (DHE), is expressed 7 days after inoculation. Finally, 2 antioxidants—D-methionine and ACE-Mg (vitamins A, C, and E with magnesium)—were administered 1 hour before and after infection in inoculated mice for 14 days. Temporal bones were harvested at postnatal day 10 for DHE detection. ABR and DPOAE testing was done at postnatal day 30. Scanning electron microscopy was also performed at postnatal day 30 to evaluate outer hair cell integrity.
Results
Nrf2-infected mice had worse hearing than uninfected mice (P < .001). A statistically significant increase in DHE fluorescence was detected in BALB/c-infected mice as compared with uninfected mice 7 days after inoculation. D-methionine- and ACE-Mg-treated mice demonstrated an attenuation of the DHE fluorescence and a significant improvement in ABR and DPOAE thresholds when compared with untreated infected controls (P < .0001). Scanning electron microscopy demonstrated less outer hair cell loss in the treated versus untreated infected controls.
Conclusion
These results demonstrate for the first time that excessive ROS mediates CMV-induced hearing loss in a mouse model.
Background. Common cold viruses create significant health and financial burdens, and understanding key loci of transmission would help focus control strategies. This study (1) examines factors that influence when individuals transition from a negative to positive test (acquisition) or a positive to negative test (loss) of rhinovirus (HRV) and other respiratory tract viruses in 26 households followed weekly for one year, (2) investigates evidence for intrahousehold and interhousehold transmission and the characteristics of individuals implicated in transmission, and (3) builds data-based simulation models to identify factors that most strongly affect patterns of prevalence. Methods. We detected HRV, coronavirus, paramyxovirus, influenza and bocavirus with the FilmArray polymerase chain reaction (PCR) platform (BioFire Diagnostics, LLC). We used logistic regression to find covariates affecting acquisition or loss of HRV including demographic characteristics of individuals, their household, their current infection status, and prevalence within their household and across the population. We apply generalized linear mixed models to test robustness of results. Results. Acquisition of HRV was less probable in older individuals and those infected with a coronavirus, and higher with a higher proportion of other household members infected. Loss of HRV is reduced with a higher proportion of other household members infected. Within households, only children and symptomatic individuals show evidence for transmission, while between households only a higher number of infected older children (ages 5-19) increases the probability of acquisition. Coronaviruses, paramyxoviruses and bocavirus also show evidence of intrahousehold transmission. Simulations show that age-dependent susceptibility and transmission have the largest effects on mean HRV prevalence. Conclusions. Children are most likely to acquire and most likely to transmit HRV both within and between households, with infectiousness concentrated in symptomatic children. Simulations predict that the spread of HRV and other respiratory tract viruses can be reduced but not eliminated by practices within the home.
While several studies have qualitatively investigated age- and region-dependent adhesion between the vitreous and retina, no studies have directly measured the vitreoretinal strength of adhesion. In this study, we developed a rotational peel device and associated methodology to measure the maximum and steady-state peel forces between the vitreous and the retina. Vitreoretinal adhesion in the equator and posterior pole were measured in human eyes from donors ranging 30 to 79 years of age, and in sheep eyes from premature, neonatal, young lamb, and young adult sheep. In human eyes, maximum peel force in the equator (7.24 ± 4.13 mN) was greater than in the posterior pole (4.08 ± 2.03 mN). This trend was especially evident for younger eyes from donors 30 to 39 years of age. After 60 years of age, there was a significant decrease in the maximum equatorial (4.69 ± 2.52 mN, p = 0.016) and posterior pole adhesion (2.95 ± 1.25 mN, p = 0.037). In immature sheep eyes, maximum adhesion was 7.60 ± 3.06 mN, and did not significantly differ between the equator and posterior pole until young adulthood. At this age, the maximum adhesion in the equator nearly doubled (16.67 ± 7.45 mN) that of the posterior pole, similar to the young adult human eyes. Light microscopy images suggest more disruption of the inner limiting membrane (ILM) in immature sheep eyes compared to adult sheep eyes. Interestingly, in human eyes, ILM disruption was significantly greater in the posterior pole (p < 0.05) and in people over 60 years of age (p < 0.02). These findings supplement the current discussion surrounding age-related posterior vitreous detachment, and the risk factors and physiological progressions associated with this condition. In addition, these data further our understanding of the biomechanical mechanisms of vitreoretinal adhesion, and can be used to develop age- appropriate computational models simulating retinal detachment, hemorrhaging, or retinal trauma.
See Creveling CJ, Colter J, Coats B. 2018. Changes in vitreoretinal adhesion with age and region in human and sheep eyes. Frontiers in Bioengineering and Biotechnology 6. https://doi.org/10.3389/fbioe.2018.00153.
The data was obtained from the FDTD simulations. For one of the FDTD simulations, the conductivity data for British Columbia was used in order to obtain the simulated data. The data obtained from simulations are post-processed using MATLAB for plotting the figures in the paper.
This is the IDL code used to create the results published in Mace, G. G., Benson, S., Humphries, R., Gombert P. M., Sterner, E.: Natural marine cloud brightening in the Southern Ocean, Atmospheric Chemistry and Physics. The IDL code processes MOD03 geolocation fields, MOD06_L2 cloud retrievals, MODIS ocean color chlorophyll-a concentrations and CERES shortwave albedo data that is distributed by NASA data archives. It creates statistical results for non-precipitating or weakly precipitating warm, liquid, shallow, marine boundary layer clouds.
The data are bed-scale measurements taken from virtual outcrop models (Morris, E.A., Atlas, C.E., Johnson, C.L., 2023, Architectural analysis of the Panther Tongue - virtual outcrop models) and calibrated with measurements taken at outcrop in the field.
Abstract: Data for Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah
This data file was used to estimate the performance of the Alphasense OPC-N3 and PMS5003 sensor in measuring ambient PM10, especially during dust events, and to obtain correction factors to correct the PMS5003 data. During April 2022, the OPC-N3 and PMS5003 sensors were collocated with federal equivalent method (FEM)at two Utah Division of Air Quality (UDAQ) sites: Hawthorne (HW) station and Environmental Quality (EQ) station. One residential site (RS)was also tested, with OPC-N3 and PMS5003 collocated with GRIMM portable aerosol spectrophotometer. The FEM data (PM2.5 and PM10 concentrations) and meteorological parameters (wind speed, wind direction, relative humidity, and temperature) for the two UDAQ sites were downloaded from the EPA website. The Excel sheet contained all the raw data and the processed data. The FEM, OPC-N3, and PMS5003 measurements were labeled as FEM-YYY, OPC-YYY, and PMS-YYY, where YYY represents the sites nomenclature, i.e., HW, EQ, and RS. The sheet labeled “HW”, “RS”, and,” EQ” contained the raw measurements (meteorological, PM10, and PM2.5 (whenever applicable)) for the sites. The sheet” PM-ratio-based correlation” provided the data used to get the PM-ratio-based correlation. Briefly, based on the ratio of FEM-HW PM2.5/PM10, the FEM-HW and PMS-HW PM10 measurements were segregated into six bins: PM2.5/PM10: <0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.7, and >0.7. For each bin, the co-located PMS-HW PM10 concentrations were linearly regressed against the FEM-HW PM10 concentrations to obtain correction factors (slope and intercept). These correction factors were later used to correct the PMS PM10 concentrations at the other two locations (RS and EQ), presented in the sheets with labels “RS correction using GRIMM ratio”, “RS correction using opc ratio” and “EQ corrected using EQ ratio”. Each sheet also includes the calculation of RMSE and NRMSE of OPC-YYY and PMS-YYY against FEM-YYY, with YYY as the site nomenclature.
The dataset contains Gas Chromatography (GC) data pertaining to the bulk electrolytic experiments, biocatalytic, organocatalytic reactions, and standards used in the study. The standard GC files calibrate the sensitivity of the column in the Gas Chromatograph to 1-heptanol, heptanal, and the corresponding alpha-hydrazino aldehyde. This information is used to quantify the peaks of 1-heptanol and heptanal obtained in the bulk electrolytic experiments and the alpha-hydrazino aldehyde obtained in the organocatalytic step.
The spectral data required to reproduce the results from the paper "Intraoperative characterization of cardiac tissue: the potential of light scattering spectroscopy," published in the Journal of Biomedical Optics.
Whole-cell recordings from the anuran inferior colliculus. The data is averaged & representative whole-cell recordings, stats and code used for the analysis.
Data were collected from the free online available International Ionosphere Reference (IRI) database ( https://kauai.ccmc.gsfc.nasa.gov/instantrun/iri) for January 1, 2020. The data were then interpolated from 1km to our desired resolution of 0.1km. This is is profile used to simulate the 3D FDTD models to observe the propagation of power line harmonic radiation through the ionosphere.